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Basic information

Extent: 2 hrs lecture/1 hrs seminar per week.
Assessment: Written tests during the semester, written and
oral examination.
Grading: According to results of the tests and the examination.
Course objective: To obtain basic knowledge about categories,
functors and natural transformations and the categorical
approach to various mathematical objects and constructions.
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Syllabus

1 Abstract and concrete categories.
2 Monomorphisms, epimorphisms, isomorphisms.
3 Subobjects, quotient objects, free objects.
4 Limits and colimits, completeness.
5 Functors.
6 Natural transformations.
7 Adjoint functors.
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1) Introduction

The category theory enables
to investigate common properties of various mathematical
objects;
to understand better the logical structure of various
mathematical theories;
to transfer ideas from one part of mathematics to another.

General approach: instead of studying the internal structure of
mathematical objects, we rather investigate their behaviour and
place in the class of similar objects.
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1) Categories

A category C is given by
the class Ob(C) of objects of C;
for every U, V ∈Ob(C) the set C(U, V ) of morphisms form U
to V ;
the composition rule, i. e. mapping
◦ : C(U, V )× C(V,W )→ C(U,W ).
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1) Categories

Requirements on a category C:
the composition is associative:

(f ◦ g) ◦ h = f ◦ (g ◦ h);

for every U ∈Ob(C) there is a unit morphism 1U such that

f ◦ 1U = f, 1U ◦ g = g

for every suitable morphisms f , g.
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1) Categories

Concrete categories:
the objects are structured sets;
the morphisms are functions between the underlying sets of
objects;
the composition of morphisms is the usual set-theoretical
composition of functions;
the unit morphisms are the identity functions.
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1) Categories

Natural examples of the concrete categories:
sets;
algebras (groups, lattices, vector spaces,...);
relational structures (graphs, ordered sets...);
continuity structures (topological spaces, metric spaces,...);
mixed structures (ordered groups, topological fields,...).
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1) Categories

Some denotations:
SET . . . the category of all sets and all mappings (i.e the
objects are all sets and the morphisms are all mappings);
GRP . . . the category og all groups and group homomorphisms
(other kinds of algebras analogously: SGR for semigroups,
MON for monoids, RNG for rings, FIELD for fields, LAT for
lattices, DLAT for distributive lattices, BOOL for Boolean
algebras, VECTF for vector spaces over a given field F , etc.);
POS . . . the category of all partially ordered sets and
order-preserving mappings;
GRAPH . . . the category of all (directed) graphs (sets endowed
with any binary relation) and all arrow-preserving mappings.
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1) Categories

TOP . . . the category of all topological spaces and all
continuous mappings;
COMP . . . the category of all compact Hausdorff spaces and
all continuous mappings;
MTP . . . the category of all metric spaces and all continuous
mappings;
MET . . . the category of all metric spaces and all contractions
(maps f satisfying ρ(f(x), f(y)) ≤ ρ(x, y)).
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1) Categories

Every monoid M can be viewed as a category with a single object
X, where M is considered as the set of all morphisms X → X and
the composition of morphisms coincides with the monoid
multiplication.
More generally, every category C can be viewed a large partial
monoid, whose elements are the morphisms of C and the
multiplication is the composition, whenever defined.
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1) Categories

A quasi-ordered set is any set Q endowed with a binary relation ≤
which is:

reflexive: x ≤ x for every x ∈ Q;
transitive: x ≤ y and y ≤ z imply x ≤ z.

We do not require the antisymmetry (x ≤ y and y ≤ x imply
x = y). An antisymmetric quasi-ordered set is called (partially)
ordered.
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1) Categories

Every quasi-ordered set (Q,≤) can be viewed as a category, where
objects are the elements of Q;
morphisms are all pairs (x, y) with x, y ∈ Q, x ≤ y (every such
pair is a morphism x→ y);
the composition of the pairs (x, y) and (y, z) is the pair (x, z),
i.e. (y, z) ◦ (x, y) = (x, z).

This category is small (the objects form a set) and thin (there is at
most one morphism between any two objects).
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1) Categories

Factorization of categories.
A congruence on a category C is an equivalence ∼ on the class of
all morphisms of C such that:

every two equivalent morphisms have common domain and
range;
if f ∼ f ′ and g ∼ g′ for f, f ′ ∈ C(X, Y ), g, g′ ∈ C(Y, Z),
then g ◦ f ∼ g′ ◦ f ′.

Every congruence gives rise to the quotient category C/ ∼, which
has the same objects as C, but the morphisms are the equivalence
classes of ∼. (Hence, the category is not concrete.)
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1) Categories

Example of a non-concrete category:
Consider the category TOP. We say that two continuous maps
f, f ′ : X → Y are homotopically equivalent (f ∼ f ′) if there is a
continuous function h : X × I → Y (where I = 〈0, 1〉 is the
interval with the usual topology) such that

h(x, 0) = f(x) and h(x, 1) = f ′(x)

for every x ∈ X.
The quotient category HTOP=TOP/ ∼ is important in algebraic
topology.
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1) Categories

Duality.
For every category C we define the dual category Cop such that

Ob(Cop) = Ob(C);
Cop(U, V ) = C(V,U) for all objects U , V .

This gives rise to a dualization of many categorial concepts, like
limit and colimit, retraction and coretraction, etc.
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2) Morphisms

A morphism f : U → V is called
a monomorphism if, for every g, h : W → U ,

f ◦ g = f ◦ h implies g = h;

an epimorphism if, for every g, h : V →W ,

g ◦ f = h ◦ f implies g = h.

Miroslav Ploščica Category Theory (UMV/TK/07)



2) Morphisms

A morphism f : U → V is called
an isomorphism if there exists g : V → U such that

f ◦ g = 1V and g ◦ f = 1U .

In the category of sets,
monomorphisms are the injective functions;
epimorphisms are the surjective functions;
isomorphisms are the bijective functions.

Miroslav Ploščica Category Theory (UMV/TK/07)



2) Morphisms

An example of a concrete category with non-surjective
epimorphisms.
TOP2 . . . the category of Hausdorff topological spaces and
continuous maps;

f : X → Y in TOP2 is an epimorphism if and only if f(X) is
dense in Y .
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2) Morphisms

A bijective morphism need not be an isomorphism.
In GRAPH, any bijective edge-preserving map is both
monomorphism and epimorphism, but not necessarily an
isomorphism.
On the other hand in categories of algebras (SGR, GRP, RNG, LAT,
etc.), the bijective morphisms are isomorphisms. (Also in COMP !)
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2) Morphisms

A morphism f : U → V is called
a retraction if there exists g : V → U such that f ◦ g = 1V .

a coretraction if there exists g : V → U such that g ◦ f = 1U .

Theorem
Every retraction is an epimorphism. Every coretraction is a
monomorphism.
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2) Morphisms

Initial objects.
An object Z ∈ Ob(C) is called initial if for every X ∈ Ob(C) there
exists a unique morphism Z → X.
Examples.

In SET, POS, GRAPH, TOP, MET, LAT, SGR and many other
categories: the object with the empty underlying set is initial.
In GRP: the one-element group is initial.
In RNG: the ring of integers is initial.
In BOOL: the 2-element Boolean algebra is initial.
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2) Morphisms

Terminal objects.
An object Z ∈ Ob(C) is called terminal if for every X ∈ Ob(C)
there exists a unique morphism X → Z.
Examples.

In SET, POS, GRAPH, TOP, MET, LAT, SGR, GRP, RNG,
BOOL and many other categories: the object with the
one-element underlying set is terminal.
In a quasi-ordered set Q viewed as a category, the largest
element (if it exists) is terminal.
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3) Subobjects, quotient objects, free objects

Let X and Y be objects of a concrete category C with Y ⊆ X (the
inclusion of underlying sets). We say that Y is a subobject of X if

the inclusion map v : Y → X is a morphism;
for every object Z, a mapping h : Z → Y is a morphisms if
and only if v ◦ h is morphism.

If only the first condition is satisfied, we speak about weak
subobjects.
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3) Subobjects, quotient objects, free objects

Subobjects in categories of algebras.
Typically, subobjects and weak subobjects are the same and are
called subalgebras (subgroups, subrings, sublattices, vector
subspaces etc.). The subobjects exist on those subsets of the
underlying sets, which are closed under basic operations. Examples:

the additive group of integers is a subgroup of the additive
group of reals;
the ring of polynomials with rational coefficients is a subring of
the ring of polynomials with real coefficients;
the lattice of natural numbers is a sublattice of the lattice of
integers (with respect to the natural order);
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3) Subobjects, quotient objects, free objects

Subobjects in categories of relational structures.
Typically, subobjects exist on any subsets of the underlying sets,
but weak subobjects need not be subobjects. In GRAPH, the weak
subobjects are called subgraphs, while subobjects are called induced
subgraphs. Hence:

a graph (V1, E1) is a subgraph of (V2, E2) if V1 ⊆ V2 and
E1 ⊆ E2;
a graph (V1, E1) is an induced subgraph of (V2, E2) if V1 ⊆ V2

and E1 = E2 ∩ (V1 × V1).
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3) Subobjects, quotient objects, free objects

Subobjects in categories of continuity.
Typically, subobjects exist on any subsets of the underlying sets and
are called subspaces (topological subspace, metric subspace, etc.).
Weak subobjects need not be subobjects. The exception is the
category COMP, where

weak subobjects are subobjects (a nontrivial topological fact);
subobjects only exist on topologically closed subsets of the
underlying sets.
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3) Subobjects, quotient objects, free objects

Let X be an object of a concrete category C and let ∼ be an
equivalence on (the underlying set of) X. An object Y with the
underlying set X/ ∼ is a quotient object of X if

the factor map p : X → Y is a morphism;
for every object Z, a mapping h : Y → Z is a morphism if
and only if h ◦ p is a morphism.

If the quotient object exists, then ∼ is called a congruence.
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3) Subobjects, quotient objects, free objects

Factorization of sets.
In the category SET,

every equivalence relation is a congruence;
the elements of a quotient object X/ ∼ are the equivalence
classes of ∼ and are denoted by

x/ ∼= {y ∈ X | y ∼ x}.

The construction of quotient objects is called a factorization.
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3) Subobjects, quotient objects, free objects

An example of quotient objects.
Consider the ring Z of integers as an object of RNG. Then

the congruences of Z are precisely the congruences “modulo
n” (including the trivial cases n = 0 and n = 1);
the quotient objects of Z are exactly the rings Zn of integers
modulo n (including the one-element ring Z1 and Z itself).
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3) Subobjects, quotient objects, free objects

Factorization of graphs.
In GRAPH, any equivalence relation on any object is a congruence.
If (V,E) is a graph and ∼ is an equivalence relation on V , then we
define the graph structure on V/ ∼ by

(x/ ∼, y/ ∼) ∈ E/ ∼ if there are x′, y′ ∈ V

such that x ∼ x′, y ∼ y′, (x′, y′) ∈ E.
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3) Subobjects, quotient objects, free objects

Factorization of topological spaces.
In TOP, every equivalence relation is a congruence. If T is a
topological space and ∼ is an equivalence on T , then the topology
on the set T/ ∼ is defined by the rule that A ⊆ T/ ∼ is open if
and only if the set ⋃

{x/∼ | x/∼ ∈ A}

is open in T .
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3) Subobjects, quotient objects, free objects

Let X be an object of a concrete category C and let M be a
subset of its underlying set. We say that X is free over M if

for every object Z and every mapping f0 : M → Z there
exists a unique morphism f : X → Z extending f0.

Examples: free algebras, β-hulls of compact spaces.
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3) Subobjects, quotient objects, free objects

Existence of free objects.
in SET: every set is free over itself;
in POSETS: free objects are the antichains (ordered sets
where no two distinct elements are comparable);
in GRAPH: free objects are the discrete graphs (without
edges);
in general: for categories of relational structures, the free
objects usually are discrete.
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3) Subobjects, quotient objects, free objects

Existence of free objects.
in SGR: the free semigroup over a set X is the semigroup of all
nonempty words over X with the operation of concatenation;
in VECF : every vector space is free over any basis;
in BOOL: the free Boolean algebra with n generators is the
Boolean algebra of all subsets of a 2n-element set;
in FIELD: free objects do not exist;
in general: free objects in the categories of algebras are useful
and interesting, often quite complicated.
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3) Subobjects, quotient objects, free objects

Existence of free objects.
in TOP: the free topological spaces are discrete (every set is
open);
in MTP: the discrete spaces are free;
in MET: free objects with more than one generator do not
exist;
in COMP: the free objects are the β-hulls of discrete spaces
(the largest compactifications);
in general: the continuity categories behave like the categories
of relational structures, but the compactness condition makes
them similar to the categories of algebras.
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3) Subobjects, quotient objects, free objects

Existence of free objects in general.

Theorem
Every nontrivial, transferable concrete category with Cartesian
products and equalizers and with bounded generating has free
objects.
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4) Limits and colimits

A diagram in a category C is a collections of objects and a
collection of morphisms between these objects.
A diagram is commuting, if all compositions of morphisms with
common domain and range coincide.

X
f−−−−→ Y

g

y s

y
Z

t−−−−→ T

In this example: s ◦ f = t ◦ g.

Miroslav Ploščica Category Theory (UMV/TK/07)



4) Limits and colimits

Let D = ({Di | i ∈ I}, {fj | j ∈ J}) be a diagram in C. The limit
of D is an object X together with morphisms pi : X → Di such
that

pk = fj ◦ pi for every j ∈ J , fj : Di → Dk;
if an object Y and morphisms gi : Y → Di satisfy
gk = fj ◦ gi for every j ∈ J , then there exists a unique
morphism h : Y → X with gi = pi ◦ h for every i.
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4) Limits and colimits

Let D = ({Di | i ∈ I}, {fj | j ∈ J}) be a diagram in C. The
colimit of D is an object X together with morphisms ei : Di → X
such that

ei = ek ◦ fj for every j ∈ J , fj : Di → Dk;
if an object Y and morphisms gi : Di → Y satisfy
gi = gk ◦ fj for every j ∈ J , then there exists a unique
morphism h : X → Y with gi = h ◦ ei for every i.
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4) Limits and colimits

Example of the limit construction:
The product of the objects Ai (i ∈ I) is an object A together with
a collection of morphisms pi : A→ Ai (called projections) having
the following property:

for every object B and every collection of morphisms
qi : B → Ai there is a unique morphisms f : B → A such
that qi = pi ◦ f for every i ∈ I.

Equivalently: The product is the limit of a diagram which contains
no morphisms.
Examples: Cartesian products of algebras, structures, topological
spaces.
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4) Limits and colimits

A category with non-Cartesian products.
MET• . . . (pointed metric spaces) is the category where:

objects are all metric spaces with one distinguished point;
morphisms are all contractions which preserve the
distinguished points;

If Mi (i ∈ I) are metric spaces (Mi having the metrics ρi and the
distinguished point ai) then the product is a subset of the Cartesian
product ΠMi consisting of all h = (hi)i∈I ∈ ΠMi such that
sup{ρi(hi, ai) | i ∈ I} is finite.
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4) Limits and colimits

Example of the colimit construction:
The coproduct (or sum) of the objects Ai (i ∈ I) is an object A
together with a collection of morphisms ei : Ai → A (called
injections) having the following property:

for every object B and every collection of morphisms
qi : Ai → B there is a unique morphisms f : A→ B such
that qi = f ◦ pi for every i ∈ I.

Equivalently: The coproduct is the colimit of a diagram with no
morphisms.
Examples: disjoint union of structures, free product of algebras.
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4) Limits and colimits

Construction of coproducts.

in POS, GRAPH, TOP: the coproduct is the disjoint union;
in SGR, GRP, LAT, and other categories of algebras: the
coproducts are the algebras “freely” generated by the disjoint
union;
in MET, FIELD: the coproducts of more that one objects do
not exist;
in COMP: the coproduct of a finite family of objects is the
disjoint union; for an infinite family it is the largest
compactification of the disjoint union.
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4) Limits and colimits

Products and coproducts are defined also for the empty family of
objects. It is easy to see that

the product of the empty family is the terminal object;
the coproduct of the empty family is the initial object;
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4) Limits and colimits

Products and coproducts in VECF . Let V and W be vector spaces
over a field F . Then

the product V ×W is the Cartesian product together with
projections p1 : V ×W → V and p2 : V ×W →W given by
p1(u, v) = u, p2(u, v) = v.
the coproduct V + W is the Cartesian product V ×W
together with injections e1 : V → V ×W , e2 : W → V ×W
given by e1(u) = (u, 0), e2(v) = (0, v);

Some other algebraic categories have the same property.
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4) Limits and colimits

Directed union as a colimit.
Let A0 ⊆ A1 ⊆ A2 ⊆ A3 ⊆ . . . be an increasing sequence of sets.
Then

⋃∞
i=1 Ai is called the directed union. (More generally, the

directed union is the union of an increasing collection of sets
indexed by any directed index set.)
It is easy to see that this directed union is the colimit of the
diagram

A0
ε0−−−−→ A1

ε1−−−−→ A2
ε2−−−−→ . . .

where εi are the set inclusions, in the category SET. (Similarly for
many other concrete categories.)
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4) Limits and colimits

Products and coproducts in thin categories.

Theorem
Let Q be a quasi-ordered set viewed as a category. Let M ⊆ Q be
a family of objects. Then

the product ΠM is equal to inf M , provided the infimum
exists;
the coproduct ΣM is equal to supM , provided the supremum
exists;
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4) Limits and colimits

Equalizers and coequalizers.
Consider the following diagram in a category C.

X Y--h
g

The limit of this diagram (if it exists) is called the equalizer of the
morphisms g and h. The colimit of this diagram (if it exists) is
called the coequalizer of g and h.
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4) Limits and colimits

Example: equalizers and coequalizers in SET.
In the category SET the equalizers and coequalizers exists for every
sets X, Y and every pair of mappings g, h : X → Y . More
precisely,

the equalizer of g and h is the set

E = {x ∈ X | g(x) = h(x)}

together with the set inclusion e : E → X;
the coequalizer of g and h is the quotient set Y/∼ together
with the natural projection p : Y → Y/∼, where ∼ is the
smallest equivalence on Y containing the set

{(g(x), h(x)) | x ∈ X}.

Miroslav Ploščica Category Theory (UMV/TK/07)



4) Limits and colimits

Pullback of the morphisms g : A1 → A0 and h : A2 → A0 is the
limit of the diagram

A1
g−−−−→ A0

h←−−−− A2

Hence, it is an object A together with morphisms πi : A→ Ai,
having the universal property.
Example: in SET, the pullback is the set

A = {(x, y) ∈ A1 ×A2 | g(x) = h(y)}

together with natural projections π1(x, y) = x and π2(x, y) = y.
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4) Limits and colimits

Pushout of the morphisms g : A0 → A1 and h : A0 → A2 is the
colimit of the diagram

A1
g←−−−− A0

h−−−−→ A2

Hence, it is an object A together with morphisms πi : Ai → A,
having the universal property.
Example: in SET, the pullback is the set

A = A1 + A2/ ∼,

where A1 + A2 denotes the disjoint union and ∼ is the least
equivalence on A1 + A2 such that g(x) ∼ h(x) for every x ∈ A0.
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4) Limits and colimits

Completeness of categories.
A category C is called complete, if every diagram in C has a limit.

Theorem
A category C is complete if and only if every family of objects has a
product and every pair of morphism (with a common domain and a
range) has an equalizer.
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4) Limits and colimits

Sketch of the proof.
Let D be a diagram in C containing objects Di (i ∈ I) and
morphisms pt (t ∈ T ). For every t ∈ T there are i(t), j(t) ∈ I with
pt : Di(t) → Dj(t). Consider the products
A = Πi∈IDi (together with morphisms πi : A→ Di) and
A∗ = Πt∈T Dj(t) (together with morphisms π∗t : A∗ → Dj(t).
By the definition of the product, there are morphisms
g, h : A→ A∗ such that π∗t ◦ g = πj(t) and π∗t ◦ h = pt ◦ πi(t) for
every t ∈ T . And it is possible to show that the equalizer of g and
h is the limit of D.
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4) Limits and colimits

Co-completeness of categories.
A category C is called co-complete, if every diagram in C has a
colimit.

Theorem
A category C is co-complete if and only if every family of objects
has a coproduct and every pair of morphism (with a common
domain and a range) has an coequalizer.
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4) Limits and colimits

Example.

Theorem
Let Q be an ordered set viewed as a category. The following
conditions are equivalent.

Q is a complete category;
Q is a co-complete category;
Q is a complete lattice (every set has a supremum and an
infimum).
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5) Functors

A functor F : C → D between the categories C and D is an
assigmnent, which

to each X ∈ Ob(C) assigns FX ∈ Ob(D);
to each f ∈ C(X, Y ) assigns Ff ∈ D(FX, FY );
preserves the composition

F (g ◦ f) = Fg ◦ Ff

and units
F (1X) = 1FX .
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5) Functors

The identity functor 1C : C → C on a category C is defined by
FX = X for each X ∈ Ob(C);
Ff = f for each f ∈ C(X, Y ).

Miroslav Ploščica Category Theory (UMV/TK/07)



5) Functors

The constant functor.
Let C and D be categories and B ∈ Ob(D). The constant functor
FB : C → D is defined by

FX = B for each X ∈ Ob(C);
Ff = 1B for each f ∈ C(X, Y ).
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5) Functors

The Cartesian product functor Q : SET→ SET is defined by
QX = X ×X for each set X;
if f : X → Y is a mapping, then Qf : X ×X → Y × Y is
defined by f(u, v) = (f(u), f(v)).
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5) Functors

The power set functor P : SET→ SET is defined by
PX is the set of all subsets of X;
Pf for f : X → Y is the mapping determined by the rule

P(f)(A) = {f(a) | a ∈ A}.
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5) Functors

A forgetful functor U : C → SET for a concrete category C is an
assigmnent, which

to each X ∈ Ob(C) assigns its underlying set;
to each f ∈ C(X, Y ) assigns f itself (viewed as a plain
mapping.
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5) Functors

We say that D is a subcategory of C if Ob(D) ⊆ Ob(C) and
D(X, Y ) ⊆ C(X, Y ) for every X, Y ∈ Ob(D).
Every such subcategory gives rise to the inclusion functor

V : D → C

defined by DX = X on objects and Df = f on morphisms.
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5) Functors

Hom-functor.
Let C be a category and A ∈ Ob(C). We define

Hom(A,−) : C → SET

as follows:
Hom(A,−)(X) = C(A,X) for each X ∈ Ob(C);
Hom(A,−)(f) for each f ∈ C(X, Y ) is a mapping
C(A,X)→ C(A, Y ) defined by g 7→ f ◦ g.
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5) Functors

The free objects functor.
Let C be a category which has free objects. We define the free
object functor F : SET→ C as follows:

for each set X, FX is the free object in C over X;
for each mapping f : X → Y assigns Ff is the unique
morphism FX → FY extending f .
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5) Functors

A composition of functors F : C → D and G : D → E is the
functor GF : C → E defined by GFX = G(FX) and
GFf = G(Ff).
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5) Functors

A functor F : C → D is called
faithful if Ff 6= Fg whenever f, g ∈ C(X, Y ) are different;
full if for every g ∈ D(FX, FY ) there exists f ∈ C(X, Y )
with Ff = g;
an isofunctor if there exists a functor G : D → C with
FG = 1D and GF = 1C .(Then C and D are isomorphic.)
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5) Functors

The structure of non-concrete categories.

Theorem
For every category C there exists a concrete category K and a
congruence ∼ on K such that C is isomorphic to the factor
category K/∼.
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5) Functors

A contravariant functor F : C → D between the categories C and
D is an assigmnent, which

to each X ∈ Ob(C) assigns FX ∈ Ob(D);
to each f ∈ C(X, Y ) assigns Ff ∈ D(FY, FX);
preserves the composition

F (g ◦ f) = Ff ◦ Fg

and units
F (1X) = 1FX .

(The usual functors are sometimes called covariant.)
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5) Functors

An example of a contravariant functor O : TOP→ LAT.
For each topological space X let O(X) be the lattice of all
open subsets of X;
to each continuous mapping f : X → Y define
O(f) : O(Y )→ O(X) by

O(f)(A) = f−1(A).

Exercise: check that O is a contravariant functor.
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6) Natural transformations

Let F,G : C → D be two functors with a common domain and a
range. A transformation τ : F → G is an assingment, which
assigns to each X ∈ Ob(C) a morphism τX : FX → GX such
that the diagram

FX
τX−−−−→ GX

Fh

y Gh

y
FY

τY−−−−→ GY

commutes for every morphism h : X → Y .
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6) Natural transformations

Let F,G,H : C → D be three functors with a common domain
and a range. Let τ : F → G and σ : G→ H be transformations.
The composition of τ and σ is a transformation F → H defined by

(σ · τ)X = σX ◦ τX .

The unit transformation 1F : F → F is defined by (1F )X = 1FX

for every X ∈ Ob(C).
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6) Natural transformations

A transformation τ : F → G is called natural equivalence if there
exists a transformation τ−1 such that τ−1 · τ = 1F and
τ · τ−1 = 1G.

Theorem
A transformation τ : F → G is a natural equivalence if and only if
τX is an isomorphism for every X.
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6) Natural transformations

An example of a natural equivalence.

Theorem
If a concrete category C has the free object Z with one generator,
then the forgetful functor U : C → SET is naturally equivalent to
the hom-functor Hom(Z,−).
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6) Natural transformations

Another example.

Theorem
Two hom-functors Hom(X,−) and Hom(Y,−) are naturally
equivalent if and only if the objects X and Y are isomorphic.
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6) Natural transformations

Categories C and D are called equivalent if there are functors
E : C → D and F : D → C such that the compositions FE and
EF are naturally equivalent to the identity functors 1C and 1D,
respectively.

Theorem
The categories C and D are equivalent if and only if there exists a
full and faithful functor E : C → D such that every Y ∈ Ob(D) is
isomorphic to EX for some X ∈ Ob(C).
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7) Adjoint functors

A pair of adjoint functors between two categories C and D consists
of functors F : C → D and G : D → C and a natural equivalence

Φ : D(F−,−)→ C(−, G−).

The natural equivalence Φ consists of bijections

ΦX,Y : D(FX, Y )→ C(X, GY )

for every X ∈ Ob(C), Y ∈ Ob(D).
If (F,G) is a pair of adjoint functors, then F is also called the left
adjoint and G the right adjoint.
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7) Adjoint functors

Theorem
(F,G) is a pair of adjoint functors if and only if there are
transformations

η : 1D → F ·G, ε : G · F → 1C ,

such that Fε · ηF = 1F and εG ·Gη = 1G.
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7) Adjoint functors

In diagrams:

FA

FA

FA

FGFA

?

-

?
-

ηFA

1FA

1FA FεA

GFGM

GM

GM

GM

?

-

?
-

1GM

εGM

GηM 1GM
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7) Adjoint functors

Example of an adjoint pair.
Let C be a concrete category which has free objects. Let
F : SET→ C be the free objects functor.
Let U : C → SET be the forgetful functor.

Theorem
(F,U) is apair of adjoint functors. The functor F is the left adjoint
and G is the right adjoint.
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7) Adjoint functors

Example of an adjoint pair.
Let C be a category with products. Let D : C → C × C be the
diagonal functor defined by DX = (X, X). Let P : C × C → C
be the product functor defined by P (Y, Z) = Y × Z.

Theorem
(D,P ) is a pair of adjoint functors.
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7) Adjoint functors

Example of an adjoint pair.
Let Q, R be ordered sets viewed as categories. Let f : Q→ R and
g : R→ Q be functors, i.e.order-preserving mappings.

Theorem
(f, g) is a pair of adjoint functors if and only if the following
condition holds for every x ∈ Q, y ∈ R:

f(x) ≤ y ⇐⇒ x ≤ g(y).
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7) Adjoint functors

Reflective subcategories.
Let D be a subcategory of a category C. Then D is called
reflective, if the inclusion functor V : D → C is a right adjoint, i.e.
if there exist a functor W : C → D such that (W,V ) is a pair of
adjoint functors.
Example: The category AB of abelian groups is a reflective
subcategory of the category GRP. The functor W assigns to each
group its maximal abelian quotient.
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7) Adjoint functors

Reflective subcategories - another example.
The category POS of ordered sets is a reflective subcategory of the
category QOS of quasiordered sets. The functor W : QOS→ POS
assigns to each quasiordered set Q its quotient

W (Q) = Q/ ∼,

where
x ∼ y =⇒ x ≤ y ≤ x.
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7) Adjoint functors

Preservation of limits.
We say that a functor F : C → D preserves limits, if
F (lim H) = lim F (H) for every diagram H in C.

Theorem
A functor preserves limits if and only if it preserves the products
and the equalizers.

Theorem
Every right adjoint functor preserves limits.
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Appendix) Definitions from algebra and topology

A semigroup is a set S endowed with a binary operation · satisfying
the associative law:

x · (y · z) = (x · y) · z.

A mapping f : S → T between semigroups S and T is a
homomorphism if it preserves the operation ·:

f(x · y) = f(x) · f(y).

A monoid is a semigroup with a distinguished neutral element e
satisfying

x · e = e · x = x.
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Appendix) Definitions from algebra and topology

A group is a monoid, additionally endowed with a unary operation
−1 satisfying

x · x−1 = x−1 · x = e.

A mapping f : S → T between groups S and T is a
homomorphism if it preserves the operations ·, −1 and the neutral
element.
The group is abelian (or commutative) if it satisfies the identity

x · y = y · x.
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Appendix) Definitions from algebra and topology

A ring is a set R endowed with binary operations + and ·, unary
operation − and a constant 0 such that

(R,+, 0,−) is an abelian group;
(R, ·) is a semigroup;
the distributive laws hold:

x · (y + z) = (x · y) + (x · z);

(y + z) · x = (y · x) + (z · x).
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Appendix) Definitions from algebra and topology

A field is a ring (R,+,−, 0, ·) satisfying the following additional
requirements:

x · y = y · x for every x, y ∈ R;
there exists 1 ∈ R such that x · 1 = x for every x ∈ R;
for every x 6= 0 there exists x−1 ∈ R such that x · x−1 = 1;
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Appendix) Definitions from algebra and topology

A vector space over a field F is a set V endowed with a binary
operation +, a unary operation −, a constant 0 and a set
{uα | α ∈ F} of unary operations, satisfying the following
conditions. (As usual, we write αx instead of uα(x).)

(V,+, 0,−) is an abelian group;
α(y + z) = (αy) + (αz);
(α + β)x = αx + βx;
(α · β)x = α(βx);
1x = x.
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Appendix) Definitions from algebra and topology

A (partially) ordered set is a set P endowed with a binary relation
≤, which is

reflexive: x ≤ x;
antisymmetric: x ≤ y and y ≤ x imply x = y;
transitive: x ≤ y and y ≤ z imply x ≤ z.

A map f : P → Q between posets is order-preserving (or isotone),
if x ≤ y implies f(x) ≤ f(y).
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Appendix) Definitions from algebra and topology

A lattice is a partially ordered set L in which every two elements
have the supremum (the least upper bound) and the infimum(the
largest lower bound). The supremum and the infimum are usually
denoted by ∨ and ∧, respectively, and regarded as binary operations
on L.
A map f : L→M between lattices is a homomorphism, if
f(x ∨ y) = f(x) ∨ f(y) and f(x ∧ y) = f(x) ∧ f(y) for every
x, y ∈ L.
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Appendix) Definitions from algebra and topology

A lattice L is called distributive if it satisfies the following identities:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z);

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

A lattice L is called bounded if it contains a smallest element 0 and
a largest element 1. (That is, 0 ≤ x ≤ 1 for every x ∈ L.)

Miroslav Ploščica Category Theory (UMV/TK/07)



Appendix) Definitions from algebra and topology

A Boolean algebra is a set B endowed with binary operations ∨ and
∧, a unary operation ′ and constants 0, 1 such that

(L,∨,∧, 0, 1) is a bounded distributive lattice;
′ is the complementation:

x ∨ x′ = 1;

x ∧ x′ = 0.
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Appendix) Definitions from algebra and topology

A graph is a set G (the set of vertices) endowed with a binary
relation E (the set of oriented edges).
An unoriented graph is a set G endowed with a symmetric and
irreflexive binary relation E.
A map f : G→ H between (unoriented) graphs is called a
homomorphism, if it is edge-preserving:

(x, y) ∈ E implies (f(x), f(y)) ∈ E.
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Appendix) Definitions from algebra and topology

A topological space is a set T endowed with a collection τ of its
subsets satisfying

∅, T ∈ τ ;
X, Y ∈ τ implies X ∩ Y ∈ τ ;
{Xi | i ∈ I} ⊆ τ implies

⋃
i∈I Xi ∈ τ .

The members of the collection τ are called open.
A map f : T → V between topological spaces is called continuous
if the set f−1(A) is open for every open set A.
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Appendix) Definitions from algebra and topology

A topological space T is called Hausdorff if for every x, y ∈ T ,
x 6= y there are open sets U , V such that x ∈ U , y ∈ V and
U ∩ V = ∅.
A topological space T is called compact if for every collection
{Ai | i ∈ I} of open sets which cover T (that is,

⋃
i∈I Ai = T )

there exists a finite subcover (that is, a finite set J ⊆ I with⋃
i∈J Ai = T ).
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Appendix) Definitions from algebra and topology

A metric space is a set M endowed with a function d : M2 → R
such that

d(x, y) ≥ 0;
d(x, y) = 0 if and only if x = y;
d(x, y) = d(y, x);
d(x, z) ≤ d(x, y) + d(y, z);

for all x, y, z ∈M .
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