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Abstract. We investigate the problem whether every distributive alge-
braic lattice is isomorphic to the congruence lattice of a majority algebra.
We try the method used in Wehrung’s solution of Dilworth’s Congru-
ence Lattice Problem. For this purpose we introduce the concept of a
strong evaporation scheme in distributive semilattices. The main result
says that the semilattices of compact congruences of majority algebras
can have strong evaporation schemes of any cardinality. The situation
for majority algebras strongly contrasts with the one for lattices, as the
latter do not have strong evaporation schemes of cardinality greater than
ℵ1. This leaves the original problem open, but we believe that our re-
sults and methods are a significant step towards its solution. We also find
a few general results, especially we prove that distributive semilattices
that are lattices can contain strong evaporation schemes of cardinality
at most ℵ1.

1. Introduction

Congruence lattices are one of the central concepts in universal algebra.

One of the most important (and hardest) problems is to determine, for

a given class K of algebras, which lattices are isomorphic to congruence

lattices of algebras in K. We refer to [17], [18] and [19] (parts of [5]), for a

survey of results and methods most relevant for our present paper.

The congruences of any algebra A form an algebraic lattice ConA.

The compact (finitely generated) congruences form a (0,∨)-subsemilattice

of ConA, denoted by ConcA. The semilattice ConcA determines ConA

uniquely, because ConA is isomorphic to the ideal lattice of ConcA.

A (0,∨)-semilattice S is called distributive if, for every x,y, z ∈ S, the

inequality z ≤ x ∨ y implies the existence of u,v ∈ S with u ≤ x, v ≤ y,

and z = u∨ v. It is well known that the semilattice S is distributive if and

only if its ideal lattice is distributive. A lattice is distributive according to

the above definition if and only if it is distributive in the usual sense.
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Now we can define the central concept of our paper. Recall that [Ω]k

denotes the family of all k-element subsets of a set Ω, while [Ω]<ω stands for

the family of all finite subsets of Ω. Let S be a distributive (0,∨)-semilattice

and e ∈ S. A decomposition system at e is a family F = {(aα0 ,aα1 ) | α ∈ Ω}
such that aα0 ∨ aα1 = e for every α ∈ Ω. The pairs (aα0 ,a

α
1 ) for distinct α

need not be distinct.

Definition 1.1. Let S be a distributive (0,∨)-semilattice and let F =

{(aα0 ,aα1 ) | α ∈ Ω} be a decomposition system at e ∈ S. Let supp : S →
[Ω]<ω be a function. We say that the pair (F , supp) is a strong evaporation

scheme (SES) at e if, for all distinct ξ1, . . . , ξn, η1 . . . , ηm, δ ∈ Ω (m,n ≥ 1),

all x,y, z ∈ S, and i ∈ {0, 1}, the conditions

(i) ξ1, . . . , , ξn /∈ supp(y), η1 . . . ηm /∈ supp(x), δ /∈ supp(z);

(ii) x ≤ aδ0, y ≤ aδ1, x ≤ aξ1i ∨ · · · ∨ aξni , y ≤ aη1i ∨ · · · ∨ aηmi ;

(iii) z ≤ x ∨ y

imply

(iv) z = 0.

The denotation supp in 1.1 stands for support. We refer to the set supp(x)

as the support of x. The cardinality of Ω will be referred to as the cardinality

of (F , supp).

The idea of evaporation has first appeared in Wehrung’s solution of the

Congruence Lattice Problem (CLP), although he has not defined the con-

cept explicitly. The main parts of his proof are reformulated in the following

two assertions.

Theorem 1.2. ([16], [12]) For every lattice L, the semilattice Conc L does

not have any SES of cardinality at least ℵ2, at any e ∈ Conc L, e 6= 0.

Theorem 1.3. ([16]) For every cardinality κ there exists a distributive semi-

lattice S of cardinality κ having a SES of cardinality κ at its largest element

1.

These theorems imply that there exist distributive semilattices not iso-

morphic to Conc L for any lattice L. Equivalently, there are distributive

algebraic lattices not isomorphic to the congruence lattice of any lattice.

This solves a longstanding problem referred to as CLP.

Theorem 1.2 has been first proved by Wehrung with |Ω| ≥ ℵω+1. This has

been later improved to ℵ2 by Růžička ([12]). The cardinality ℵ2 in Theorem

1.2 and other results might look surprising, but it is partially explained
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by Gillibert’s result ([3]) saying that, under certain conditions, the critical

point between two varieties of algebras cannot exceed ℵ2.
The cardinality bound ℵ2 is optimal. Every distributive semilattice of

cardinality at most ℵ1, including the one constructed in Theorem 1.3, is

isomorphic to Conc L for some lattice L. (See [6].) Hence, we have the fol-

lowing theorem.

Theorem 1.4. There exists a lattice L (|L| = ℵ1) with compact top con-

gruence 1 ∈ Conc L such that Conc L has a SES of cardinality ℵ1 at 1.

A weaker version of our main concept, called evaporation scheme (ES)

has been used in [8] to find more examples of algebraic distributive lattices

that are not isomorphic to the congruence lattices of lattices. One of the

results of [8] concerns majority algebras, that is algebras (M ;m), where m

is a ternary operation satisfying the majority law

m(x, x, y) = m(x, y, x) = m(y, x, x) = x.

It is proved ([8], Theorem 4.4) that semilattices of compact congruences of

majority algebras can contain arbitrarily large ESs. Another result of [8]

strengthens Theorem 1.2 by proving that semilattices of compact congru-

ences of lattices do not have ESs of cardinality at least ℵ2. Hence, [8] estab-

lishes that the class of congruence lattices of majority algebras is strictly

larger that the class of congruence lattices of lattices.

In our Theorem 3.4, using SESs instead of ESs, we strengthen the first of

the above results about majority algebras. This, together with Theorem 1.2,

provides an alternative proof of the distinction between congruence lattices

of majority algebras and lattices.

Evaporation schemes are connected with various refinement properties

in distributive semilattices or, more generally, commutative monoids, see

for instance [1], [14], [15], [10], or other papers.

After the negative solution of CLP, it is natural to ask whether there is

any congruence-distributive variety V such that every distributive algebraic

lattice is isomorphic to ConA for some A ∈ V . The most obvious candidate

is the variety of majority algebras, as the majority law ensures that the

variety is congruence-distributive. Hence, we have the following problem.

Problem 1.5. (See [19], Problem 9.3.) Is every distributive algebraic lattice

isomorphic to the congruence lattice of some majority algebra?

This paper is an attempt to solve the above problem. We use Wehrung’s

approach and investigate an analogue of Theorem 1.2 for majority algebras.
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Unfortunately, we find that congruence lattices of majority algebras can

contain SESs of any size, which leaves the above problem open. Nevertheless,

we believe the result is worthwhile for the following reasons.

(1) The result and its proof can still be helpful in solving Problem 1.5.

For instance, one could try to further strengthen the concept of a

SES.

(2) Our result strengthens a result from [8] and provides a new proof (a

new construction) for Theorem 1.3.

(3) We have found a nontrivial piece of information, which leads to

a better understanding of congruence lattices of majority algebras.

This infomation may be used, for instance, to distinguish congruence

lattices of majority algebras from congruence lattices of other kind

of algebras.

In our investigation we also found several properties of evaporation schemes

in distributive semilattices in general. These results are comprised in the

next section. They are not needed for the majority algebras result, but

we consider them interesting in their own right. One of them strengthens

Theorem 1.4. Generally, we believe that (strong) evaporation schemes are

worth further investigation.

2. General results

In the definition of a decomposition system F , the pairs (aα0 ,a
α
1 ) need

not be distinct for distinct α ∈ Ω. This way a semilattice S can contain a

SES larger that the cardinality of S. Indeed, for any decomposition system

with finite Ω we can define supp(x) = Ω for every x ∈ S. Then (F , supp)

is clearly a SES, as the condition 1.1(i) cannot be satisfied. Now we prove

that this cannot happen for infinite Ω. (Except for the trivial case e = 0.)

Theorem 2.1. Let (F , supp) with F = {(aα0 ,aα1 ) | α ∈ Ω} be a decomposi-

tion system at e 6= 0 in a distributive (0,∨)-semilattice S. Let (F , supp) be

a SES at e. If Ω is infinite, then |Ω| ≤ |S|.

Proof. For contradiction, suppose that |S| < |Ω|. For every x ∈ S, the set

supp(x) is finite, so

|
⋃
{supp(x) | x ∈ S}| < |Ω|.

Let Ω0 = Ω \
⋃
{supp(x) | x ∈ S}. Choose distinct ξ, η, δ ∈ Ω0 arbitrarily.

Since aδ0∨aδ1 = e 6= 0, we have aδ0 6= 0 or aδ1 6= 0. Without loss of generality

we may assume aδ0 6= 0. Since aδ0 ≤ e = aξ0 ∨ aξ1, the distributivity implies

the existence of u,v ∈ S with aδ0 = u ∨ v, u ≤ aξ0, and v ≤ aξ1. We have
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u 6= 0 or v 6= 0. If u 6= 0, we set x = z = u, y = 0, i = 0. If v 6= 0, we

set x = z = v, y = 0, i = 1. In both cases the conditions 1.1(i)-(iii) are

satisfied, while 1.1(iv) is not, which is a contradiction. �

The cardinality bound |Ω| ≤ |S| is optimal by Theorem 1.3. An inter-

esting question is whether large SESs can occur in lattices S. We show

that cardinalities greater than ℵ1 are not possible. In the proof we use the

following Kuratowski’s principle of infinite combinatorics.

Theorem 2.2. ([7]) Let Ω be a set of cardinality at least ℵ2. Let Φ be a map

[Ω]2 → [Ω]<ω. Then there are distinct α, β, γ ∈ Ω such that α /∈ Φ(β, γ),

β /∈ Φ(α, γ), and γ /∈ Φ(α, β).

Conversely, for any set Ω with |Ω| ≤ ℵ1 there exists a map Φ : [Ω]2 →
[Ω]<ω such that for every distinct α, β, γ ∈ Ω, at least one of the conditions

α ∈ Φ(β, γ), β ∈ Φ(α, γ), and γ ∈ Φ(α, β) holds.

A set {α, β, γ} satisfying α /∈ Φ(β, γ), β /∈ Φ(α, γ), and γ /∈ Φ(α, β) is

usually called free with respect to Φ. The above principle is a special case

of a much more general theorem.

Theorem 2.3. Let (F , supp) with F = {(aα0 ,aα1 ) | α ∈ Ω} be a decompo-

sition system at e 6= 0 in a distributive lattice S with 0. Let (F , supp) be a

SES at e. Then |Ω| ≤ ℵ1.

Proof. For contradiction, suppose that |Ω| ≥ ℵ2. For every α, β ∈ Ω, α 6= β

we define

Φ(α, β) = supp(aα0 ∧a
β
0 )∪ supp(aα0 ∧a

β
1 )∪ supp(aα1 ∧a

β
0 )∪ supp(aα1 ∧a

β
1 ).

This defines a function Φ : [Ω]2 → [Ω]<ω. By Kuratowski’s principle, there

are distinct α, β, γ ∈ Ω such that α /∈ Φ(β, γ), β /∈ Φ(α, γ), and γ /∈ Φ(α, β).

Now we claim that at least one of the elements aαi ∧ aβi , aαi ∧ aγi , a
β
i ∧ aγi

(i = 0, 1) is nonzero. Indeed, aαi ∧ aβi = 0 together with aβi ≤ aα0 ∨ aα1
implies

aβi = (aαi ∧ aβi ) ∨ (aα1−i ∧ aβi ) = aα1−i ∧ aβi ,

hence aβi ≤ aα1−i. If all the six elements above were equal to 0, we would

obtain

aβ0 ≤ aα1 ≤ aγ0 ≤ aβ1 ≤ aα0 ≤ aγ1 ≤ aβ0 ,

so all the elements are equal to zero, which contradicts the assumption

aα0 ∨ aα1 = e 6= 0.

Now assume, for instance, that aα0 ∧ aβ0 6= 0. (Other cases are similar.)

We set x = aα0 ∧ aγ0 , y = aβ0 ∧ aγ1 , z = aα0 ∧ aβ0 , ξ = α, η = β, δ = γ, and
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i = 0. It is easy to check that the conditions 1.1(i)-(iii) are fulfilled, while

1.1(iv) is not. (For instance, ξ = α /∈ Φ(β, γ) ⊇ supp(y).) Hence, we have a

contradiction. �

The above theorem could be also deduced from earlier results. According

to Schmidt’s theorem ([13]), every distributive lattice with 0 is isomorphic

to Conc L for some lattice L. And by Theorem 1.2, Conc L cannot contain

a SES of cardinality ℵ2, which implies Theorem 2.3. However, both 1.2 and

Schmidt’s theorem are much more complicated than 2.3, so we prefer the

direct proof above.

Now we prove the converse to Theorem 2.3 by constructing a distributive

lattice having a SES of cardinality ℵ1. We are inspired by the construction

of free distributive semilattices in [9], which was used by Wehrung in his

proof of Theorem 1.3.

Let Ω be a set of cardinality ℵ1. Let S(Ω) be the free bounded distributive

lattice generated by elements aα0 and aα1 , α ∈ Ω satisfying the condition

aα0 ∨ aα1 = 1. For every X ⊆ Ω let S(X) be the bounded sublattice of S(Ω)

generated by all aα0 and aα1 , α ∈ X.

Lemma 2.4. Let X, Y ⊆ Ω, z ∈ S(X), x ∈ S(Y ), i ∈ {0, 1}, and let

z ≤ x∨aα1
i ∨ · · · ∨a

αn
i for some α1, . . . , αn ∈ Ω \Y . Then z ≤ x∨

∨
{aαk

i |
αk ∈ X}.

Proof. Let h : S(Ω) → S(Ω) be the lattice homomorphism determined

uniquely by

h(aαi ) =

{
aαi if α ∈ X ∪ Y
0 if α /∈ X ∪ Y ,

h(aα1−i) =

{
aα1−i if α ∈ X ∪ Y
1 if α /∈ X ∪ Y .

Such a homomorphism exists by the defining property of S(Ω). Then

h(x) = x, h(z) = z, so we obtain that

z = h(z) ≤ x ∨ h(aα1
i ) ∨ . . . h(aαn

i ) = x ∨
∨
{aαk

i | αk ∈ X}.

�

As a special case for x = 0, Y = ∅ we get the following consequence.

Lemma 2.5. Let X ⊆ Ω, z ∈ S(X), i ∈ {0, 1}, and let z ≤ aα1
i ∨ · · · ∨a

αn
i

for some α1, . . . , αn ∈ Ω. Then z ≤
∨
{aαk

i | αk ∈ X}.

By Kuratowski’s principle, there exists Φ : [Ω]2 → [Ω]<ω such that

α ∈ Φ(β, γ) or β ∈ Φ(α, γ) or γ ∈ Φ(α, β) holds for every distinct α, β, γ ∈ Ω

.
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For every x ∈ S(Ω) we can choose a finite set Ax ⊂ Ω such that x ∈
S(Ax). Let us define

supp(x) = Ax ∪
⋃
{Φ(α, β) | α, β ∈ Ax, α 6= β}.

Clearly, supp : S(Ω)→ [Ω]<ω.

Theorem 2.6. The decomposition system F = {(aα0 ,aα1 ) | α ∈ Ω} together

with the support function defined above form a strong evaporation scheme

at 1 ∈ S(Ω).

Proof. Let ξ1, . . . , ξn, η1 . . . , ηm, δ ∈ Ω, x,y, z ∈ S, and i ∈ {0, 1} satisfy 1.1

(i)-(iii).

If z ≤ y, then z ≤ y ≤ aδ1. Since δ /∈ supp(z) ⊇ Az, Lemma 2.5 applied

to the inequality z ≤ aδ1 implies that z = 0. Similarly, the assumption

z ≤ x leads to z = 0.

Suppose now that z 6≤ x, z 6≤ y. We show that this case leads to a

contradiction. Since z ≤ x∨y, we have x,y 6= 0. By Lemma 2.5 we can as-

sume that {ξ1, . . . , ξn} ⊆ Ax, {η1, . . . , ηm} ⊆ Ay. Similarly, the inequalities

x ≤ aδ0 and y ≤ aδ1 imply that δ ∈ Ax∩Ay. Now, ξk ∈ Φ(ηj, δ) would imply

ξk ∈ supp(y), a contradiction. Hence, ξk /∈ Φ(ηj, δ). For similar reasons,

ηj /∈ Φ(ξk, δ). The remaining possibility is that δ ∈ Φ(ξk, ηj) for every k, j.

The conditions (ii) and (iii) imply z ≤ x∨ aη1i ∨ · · · ∨ a
ηm
i . Since z 6≤ x,

Lemma 2.4 implies that there exists ηj ∈ Az. Similarly, from z ≤ y ∨ aξ1i ∨
· · · ∨ aξmi we obtain that ξk ∈ Az for some ξk. But then δ ∈ Φ(ξk, ηj) ⊆
supp(z), a contradiction. �

So, there exists a bounded distributive lattice having a SES at 1 with

|Ω| = ℵ1. Since every such lattice is isomorphic to Conc L for some lattice

L ([13]), our result strengthens Theorem 1.4.

3. Congruence lattices of majority algebras

We consider bounded majority algebras (M ;m, 0, 1), which means that

besides the majority law we have constants 0, 1 satisfying

m(x, 0, 1) = m(x, 1, 0) = m(0, x, 1) = m(0, 1, x) =

= m(1, 0, x) = m(1, x, 0) = x

for every x ∈M .

The boundedness ensures that the largest congruence 1 on M is gener-

ated by the pair (0, 1) and therefore compact. Indeed, if (0, 1) ∈ τ ∈ ConM ,

then (x, 0) = (m(0, x, 1),m(0, x, 0)) ∈ τ for every x ∈M .
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Every bounded lattice (L;∨,∧, 0, 1) gives rise to the majority algebra

(L;m, 0, 1), where

m(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z).

Since x ∨ y = m(x, y, 1) and x ∧ y = m(x, y, 0), both algebras are term

equivalent, and hence have the same congruences. On the other hand, the

class of majority algebras is more general, and there are majority algebras

that do not arise from lattices.

Bounded majority algebras form a variety, so there exist free algebras.

Let F (Ω) denote the free bounded majority algebra with Ω as the set of

free generators. For X ⊆ Ω let F (X) be the subalgebra of F (Ω) generated

by X. It is easy to see that F (X) is freely generated by X.

For every α ∈ Ω denote aα0 = θ(0, α), aα1 = θ(1, α). That is, aα0 and

aα1 are the smallest congruences containing the pairs (0, α) and (1, α), re-

spectively. Clearly, aα0 ∨ aα1 = 1. Thus, F = {(aα0 ,aα1 ) | α ∈ Ω} is a

decomposition system at 1 ∈ Conc F (Ω).

Further, every x ∈ Conc F (Ω) is finitely generated, so there exists a

finite subset supp(x) ⊆ Ω such that x is generated by its restriction to

F (supp(x)). (We choose any such finite set, without any minimality re-

quirements.) This defines a function supp : S = Conc F (Ω) → [Ω]<ω. The

essential property of the support is described in the following easy lemma.

Lemma 3.1. Let a ∈ Conc F (Ω), τ ∈ ConF (Ω), and supp(a) ⊆ Y ⊆ Ω.

Then a ≤ τ if and only if a � F (Y ) ≤ τ � F (Y ).

The following two easy assertions are true not just for majority algebras,

but in general. If A is an algebra, τ ∈ ConA and x ∈ A, then x/τ denotes the

τ -equivalence class containing x. Also recall that for every homomorphism

h : A→ B the relation Ker(h) = {(x, y) ∈ A | h(x) = h(y)} (the kernel of

h) is a congruence on A.

Lemma 3.2. Let τ ∈ ConF (X), X ⊆ Ω. Let τ be the congruence on F (Ω)

generated by τ . Then τ � F (X) = τ .

Proof. Choose a homomorphism g : F (Ω)→ F (X)/τ satisfying g(x) = x/τ

for every x ∈ X. (That is, choose g(x) for x ∈ Ω \X arbitrarily.) Then τ ≤
Ker(g) and Ker(g) ∈ ConF (Ω), so τ ≤ Ker(g). Since Ker(g) � F (X) = τ ,

we obtain τ � F (X) ≤ τ . The converse inequality is obvious. �

Lemma 3.3. Let X, Y ⊆ Ω. If F (X ∩ Y ) 6= ∅, then F (X) ∩ F (Y ) =

F (X ∩ Y ).
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Proof. Let u ∈ F (X) ∩ F (Y ). Then u = s(x1, . . . , xn) = t(y1, . . . , ym) for

some terms s, t and x1, . . . , xn ∈ X, y1, . . . , ym ∈ Y . Choose z ∈ F (X ∩ Y )

and consider the homomorphism h : F (Ω)→ F (Ω) given by

h(α) =

{
z if α ∈ X \ Y
α if α ∈ Ω \ (X \ Y ).

Then

u = t(y1, . . . , ym) = h(t(y1, . . . , ym)) = h(s(x1, . . . , xn)) =

s(h(x1), . . . , h(xn)) ∈ F (X ∩ Y ),

since all h(xi) belong to F (X ∩ Y ). �

In bounded majority algebras, the condition F (X ∩ Y ) 6= ∅ is always

satisfied, as F (∅) = {0, 1}.
Now we prove the main result of this section.

Theorem 3.4. For any Ω, the pair (F , supp) is a strong evaporation scheme

at 1 ∈ Conc F (Ω).

Proof. Let ξ1, . . . , ξn, η1 . . . , ηm, δ ∈ Ω, x,y, z ∈ S, and i ∈ {0, 1} satisfy

1.1(i)-(iii). Suppose i = 0. (The proof for i = 1 is similar.) Now we define

several majority algebras. Let

W0 = F (Ω \ {δ, ξ1, . . . , ξn, η1, . . . , ηm}),

W1 = F (Ω \ {δ, η1, . . . , ηm}),

W2 = F (Ω \ {ξ1, . . . , ξn, η1, . . . , ηm}),

W3 = F (Ω \ {δ, ξ1, . . . , ξn}),

W4 = W1 ×W2,

W5 = F (Ω \ {δ}),

W6 = W3 ×W2.

Consider the diagram
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with homomorphisms defined as follows. The maps f01, f02, f03, f15, and f35

are set inclusions. Further,

f14(x) =

{
(x, 0) if x ∈ {ξ1, . . . , ξn}
(x, x) for every x ∈ Ω \ {δ, ξ1, . . . , ξn, η1, . . . , ηm}

f24(x) =

{
(0, δ) if x = δ
(x, x) for every x ∈ Ω \ {δ, ξ1, . . . , ξn, η1, . . . , ηm}

f36(x) =

{
(x, 0) if x ∈ {η1, . . . , ηm}
(x, x) for every x ∈ Ω \ {δ, ξ1, . . . , ξn, η1, . . . , ηm}

f26(x) =

{
(1, δ) if x = δ
(x, x) for every x ∈ Ω \ {δ, ξ1, . . . , ξn, η1, . . . , ηm}.

Since W1, W2, and W3 are free algebras, the above rules define the homo-

morphisms f14, f24, f26, and f36 uniquely. It is easy to see that the diagram

is commutative. (It is enough to check it on the free generators of W0.)

Lemma 3.3 implies that W1 ∩W2 = W1 ∩W3 = W2 ∩W3 = W0. Further,

since f15 and f35 are set inclusions, f15(x) = f35(y) implies x = y ∈ W0.

Now we claim that, similarly, f14(x) = f24(y) implies x = y ∈ W0. Clearly,

rng f14 ⊆ W1 × W0 and rng f24 ⊆ W0 × W2. Then f14(x) = (x, z1) and

f24(y) = (z2, y) for some z1, z2 ∈ W0. The equality f14(x) = f24(y) implies

that x = z2 ∈ W0 and y = z1 ∈ W0. Since the homomorphism f14f01 =

f24f02 is injective, we have x = y. Similarly one can prove that f36(x) =

f26(y) implies x = y ∈ W0.

Now let W be the colimit of our diagram in the category of sets. That

means, W is the disjoint union of Wk, k = 0, . . . , 6 factored by the smallest

equivalence relation ρ containing all pairs of the form (x, fkl(x)), x ∈ Wk.

Equivalently, consider the disjoint union of W4, W5, and W6 factored by
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ρ = ∆ ∪ ρ1 ∪ ρ2 ∪ ρ3, where ∆ is the diagonal (all pairs of the form (x, x))

and

ρ1 = {(f14(x), f15(x)) | x ∈ W1} ∪ {(f15(x), f14(x)) | x ∈ W1},

ρ2 = {(f24(x), f26(x)) | x ∈ W2} ∪ {(f26(x), f24(x)) | x ∈ W2},

ρ3 = {(f35(x), f36(x)) | x ∈ W3} ∪ {(f36(x), f35(x)) | x ∈ W3}.

The consideration in the previous paragraph show the transitivity of this

relation ρ. For instance, if (a, b) = (f14(x), f15(x)) and (b, c) = (f35(y), f36(y)),

then f15(x) = f35(y), so x = y ∈ W0 and then, by the commutativity of

the diagram, (a, c) = (f24(x), f26(x)) ∈ ρ. As another case we consider

(a, b) = (f14(x), f15(x)) and (b, c) = (f15(y), f14(y)). Since f15 is injective,

we have x = y, so a = c and hence (a, c) ∈ ρ. Other cases are similar.

Notice that ρ restricted to any of W4, W5, and W6 is trivial. So, identify-

ing x with x/ρ, these sets can be considered as subsets of W . In this sense,

W1 = W4 ∩W5, W2 = W4 ∩W6, and W3 = W5 ∩W6.

This enables us to define the majority operation m on W by the following

rules.

a) If a, b, c ∈ Wj for some j ∈ {4, 5, 6}, then m(a, b, c) is evaluated in

Wj.

b) If two of a, b, c are equal, then m(a, b, c) is determined by the ma-

jority rule.

c) m(a, b, c) = 0 in all remaining cases.

It is easy to see that W is defined correctly.

Let

h : F (Ω)→ W

be the homomorphism determined by the rule h(α) = α for every α ∈
Ω. More precisely, h(ξj) = f14(ξj)/ρ = f15(ξj)/ρ, h(ηj) = f35(ηj)/ρ =

f36(ηj)/ρ, h(δ) = f24(δ)/ρ = f26(δ)/ρ, and h(α) = f14(α)/ρ = f15(α)/ρ =

f26(α)/ρ for α ∈ Ω \ {δ, ξ1, . . . , ξn, η1, . . . , ηm}.
We claim that x ≤ Ker(h). By Lemma 3.1 it suffices to prove that

x � F (X) ≤ Ker(h) � F (X),

where X = Ω \ {η1, . . . , ηm}.
Let p1 and p2 be the projections of W4 onto W1 and W2, respectively.

Since h maps F (X) into W4, the restrictions p1h � F (X) and p2h � F (X)

are well-defined. Clearly,

Ker(p1h � F (X)) ∩Ker(p2h � F (X)) = Ker(h � F (X)).
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Let τ be the congruence on F (X) generated by the pair (0, δ). By Lemma

3.2, τ = aδ0 � F (X). Since p1h(δ) = 0, we have (0, δ) ∈ Ker(p1h � F (X)), so

aδ0 � F (X) = τ ≤ Ker(p1h � F (X)). Similarly, let σ be the congruence on

F (X) generated by all pairs (0, ξj). Since p2h(ξj) = 0 for every j, we have

aξ10 ∨ · · · ∨ aξn0 � F (X) = σ ≤ Ker(p2h � F (X)). By the assumption (ii) we

obtain that

x � F (X) ≤ aδ0 ∧ (aξ10 ∨ · · · ∨ aξn0 ) � F (X)

≤ Ker(p1h � F (X)) ∩Ker(p2h � F (X)) = Ker(h � F (X)).

So, x ≤ Ker(h). By the same way we show that y ≤ Ker(h). It suffices

to prove that

y � F (Y ) ≤ Ker(h � F (Y )),

where Y = Ω \ {ξ1, . . . , ξn}.
Let p3 and p4 be the projections of W6 onto W3 and W2, respectively.

Let τ ′ be the congruence on F (Y ) generated by the pair (1, δ). By Lemma

3.2, τ ′ = aδ1 � F (Y ). Since p3h(δ) = 1, we have (1, δ) ∈ Ker(p3h � F (Y )), so

aδ1 � F (Y ) = τ ′ ≤ Ker(p3h � F (Y )). Similarly, let σ′ be the congruence on

F (Y ) generated by all pairs (0, ηj). Since p4h(ηj) = 0 for every j, we have

aη10 ∨ · · · ∨ aηm0 � F (Y ) = σ′ ≤ Ker(p4h � F (Y )). By the assumption (ii) we

obtain that

y � F (Y ) ≤ aδ1 ∧ (aη10 ∨ · · · ∨ aηm0 ) � F (Y )

≤ Ker(p3h � F (Y )) ∩Ker(p4h � F (Y )) = Ker(h � F (Y )).

So, we have x ≤ Ker(h), y ≤ Ker(h). By the assumption (iii), z ≤
x ∨ y ≤ Ker(h). Then

z � F (Z) ≤ Ker(h � F (Z)),

where Z = Ω\{δ}. However, h � F (Z) is injective, it maps F (Z) identically

onto W5. So, z � F (Z) = 0. Since supp(z) ⊆ Z, we obtain z = 0. �

Theorem 1.2 says that the above proof cannot work for lattices instead

of majority algebras. However, the only place where the difference between

lattices and majority algebras matters, is the definition of the algebra W .

This step is impossible to do with lattices. Indeed, we would have ξi∧ δ = 0

in W4 and ηj ≤ δ in W6. In lattices, this implies ξi ∧ ηj = 0, which is not

true in W5. So, W cannot be a lattice.

Theorem 3.4 means that Problem 1.5 remains open. The situation is now

analogous to the situation with CLP after the result from [10]. One can try

to achieve a negative solution by a further strengthening of the SES concept.

On the other hand, the proof of 3.4 suggests that the method of diagram

lifting (see [11], [2], [4], [19]) can be used to attempt a positive solution.
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If |Ω| = κ ≥ ℵ0, then |F (Ω)| = |Conc F (Ω)| = κ. So, Theorem 3.4

provides a new proof of Theorem 1.3.
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[7] K. Kuratowski, Sur une caractérisation des alephs, Fund. Math. 38 (1951), 14–17.
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