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Abstract. We study strong endomorphism kernel property (SEKP) for some classes

of universal algebras. Using Katriňák-Mederly triple construction we prove a universal
equivalent condition under which a modular p-algebra has SEKP. As a consequence,

we characterize distributive lattices with top element which enjoy SEKP. Using Priest-

ley duality we also characterize unbounded distributive lattices which have SEKP.

1. Introduction

The concept of the (strong) endomorphism kernel property for an universal

algebra has been introduced by Blyth, Fang and Silva as follows. (See [2] and

[3].)

Definition 1.1. An algebra A has the endomorphism kernel property (EKP)

if every congruence relation on A different from the universal congruence ιA =

A×A is the kernel of an endomorphism on A.

Let θ ∈ Con(A) be a congruence on A. We say that a mapping f : A→ A

is compatible with θ if a ≡ b(θ) implies f(a) ≡ f(b)(θ). An endomorphism of

A is called strong), if it is compatible with every congruence θ ∈ Con(A).

The compatibility of functions (of any arity) with congruences has been

widely studied in various contexts. We refer to the monograph [12] for an

overview. Compatible functions are sometimes called ”congruence preserving

functions” or ”functions with substitution property”.

Definition 1.2. An algebra A has the strong endomorphism kernel property

(SEKP) if every congruence relation on A different from the universal congru-

ence ιA is the kernel of a strong endomorphism of A.

The exception for the universal congruence ιA appears in the above defi-

nitions with the purpose that algebras with two or more nullary operations

have a chance to satisfy the conditions. It is not necessary for algebras with
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one-element subagebras, such as distributive lattices in the second half of this

paper.

Blyth and Silva considered the case of Ockham algebras and in particular of

MS-algebras and provided a full characterization of MS-algebras having SEKP.

For instance, a Boolean algebra has SEKP if and only if it has exactly two

elements. Further Blyth, J. Fang and Wang in [4] proved a full characterization

of finite distributive double p-algebras and finite double Stone algebras having

SEKP. SEKP for distributive p-algebras and Stone algebras has been studied

and fully characterized by G. Fang and J. Fang in [7]. J. Fang and Sun fully

described semilattices with SEKP in [8]. The main approach in papers [3],

[4] and [7] is to regard algebras in question as Ockham algebras and use the

Priestley duality.

The original paper [3] of Blyth and Silva contains one additional assumption,

namely that all considered algebras contain two nullary operations (denoted

by 0 and 1, 0 6= 1). We do not keep this assumption in our paper and we would

like to remark that in our more general context some of the results from [3] are

no longer true. For instance, Corollary 1 in [3] says that a finite algebra with

SEKP is directly indecomposable, while it is easy to check that the 4-element

lattice {0, 1}2 has SEKP. Also, all one-element algebras trivially have SEKP.

2. SEKP and modular p-algebras

We shall use Katriňák-Mederly triple construction for Stone algebras and

modular p-algebras (see [13]) in this section. This approach enables us to prove

some general characterization of SEKP for modular p-algebras and using this,

to translate results of the paper [3] or [7] to the case of distributive {1}-lattices

({0}-lattices).

A (modular, distributive) p-algebra is an algebra L = (L;∨,∧,∗ , 0, 1) of type

(2,2,1,0,0), where (L;∨,∧, 0, 1) is a bounded (modular, distributive) lattice

and, for every a ∈ L, the element a∗ is a pseudocomplement of a, i.e. x ≤ a∗

if and only if x ∧ a = 0. The standard results on p-algebras may be found in

[10].

An S−algebra is a p-algebra satisfying the Stone identity x∗∨x∗∗ = 1. The

S−algebra L is a Stone algebra, if it is distributive.

Every modular p-algebra possesses two important parts: the Boolean al-

gebra of closed elements (S(L); +,∧,∗ , 0, 1), where x ∈ S(L) if and only if

x = x∗∗ (S(L) stands for a skeleton of L) and

x∗∗ + y∗∗ = (x ∨ y)∗∗

for every x, y ∈ L; the second key subset of L is the filter D(L) of dense ele-

ments, that means, x is dense if and only if x∗ = 0. We regard D(L) as a lattice

with 1, that is, an algebra of type (2, 2, 0). A modular p-algebra L is uniquely

determined (up to isomorphism) by its associated triple (S(L), D(L), ϕ(L)),
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where ϕ(L) is a mapping of S(L) into the lattice of all filters of D(L) defined

by

ϕ(L) : a 7→ D(L) ∩ [a∗)

for every a ∈ S(L) (see [13, Theorems 2 and 4]).

The triple construction of a modular p-algebra L enables to decompose

any congruence relation θ ∈ Con(L) and any endomorphism f ∈ End(L) of a

modular p-algebra L as follows.

Theorem 2.1. (See [13].) Let L be a modular p-algebra. For every θ ∈ Con(L)

the restrictions θS = θ � S(L) and θD = θ � D(L) are congruences on S(L)

and D(L), respectively. A pair (θ1, θ2) ∈ Con(S(L)) × Con(D(L)) is equal to

(θS , θD) for some congruence θ ∈ Con(L) iff

a ≡ 0(θ1) implies x ≡ 1(θ2) for all x ∈ ϕ(L)(a).

The pair (θS , θD) determines θ uniquely.

A pair (θ1, θ2) satisfying the condition from Theorem 2.1 is called a con-

gruence pair of L.

Theorem 2.2. (See [13].) Let L be a modular p-algebra. For every f ∈
End(L) the restrictions fS = f � S(L) and fD = f � D(L) are endomorphisms

of S(L) and D(L), respectively. A pair (h, g) ∈ End(S(L)) × End(D(L)) is

equal to (fS , fD) for some f ∈ End(L) iff the conditions

(i) g(a ∨ a∗) = h(a) ∨ h(a)∗;

(ii) {g(x);x ∈ ϕ(L)(a)} ⊆ ϕ(L)(h(a));

are satisfied for all a ∈ S(L).

The pair (fS , fD) determines f uniquely.

A pair (h, g) satisfying the conditions from Theorem 2.2 is called fair.

Now we can begin our investigation of SEKP for modular p-algebras. By

[11, Theorem 2.6(i)] we know that if a modular p-algebra L has SEKP, then

it is an S-algebra (compare also with Corollary 3.2 of [7]).

In fact, we can say something more precise. Given a p-algebra L, we may

form the Glivenko congruence Γ on L as follows:

x ≡ y(Γ) iff x∗ = y∗ iff x∗∗ = y∗∗.

Each Glivenko congruence class [c]Γ contains a unique closed element a = c∗∗,

which is the greatest element of [c]Γ. Thus every Glivenko congruence class

can be expressed as [a]Γ for some a ∈ S(L).

Lemma 2.3. Let Γ be the Glivenko congruence on a modular p-algebra L.

Then Γ is a kernel of a strong endomorphism on L if and only if L is an

S−algebra.

Proof. The proof is the same as for [11, Lemma 2.3], we need only to add that

for an S-algebra L, the mapping h : x 7→ x∗∗ on L is a strong endomorphism

on L. �
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Now we can prove our first result

Theorem 2.4. Let L be a modular p-algebra. An endomorphism f : L → L

is strong if and only if fS and fD are strong.

Proof. Let θ1 ∈ Con(S(L)) and let ιD = D(L)×D(L) be the universal congru-

ence on D(L). Then (θ1, ιD) is a congruence pair of L (because now we have

x ≡ 1(ιD) for any x ∈ D(L) ). It means that there is a congruence θ ∈ Con(L)

such that θS = θ1 (and θD = ιD). Let a, b ∈ S(L), (a, b) ∈ θ1. Then (a, b) ∈ θ
and, as f is a strong, we see that

fS(a) = f(a) ≡(θ) f(b) = fS(b),

which means that fS is compatible with every congruence θ1 ∈ Con(S(L)) and

therefore it is a strong endomorphism on S(L).

Let θ2 ∈ Con(D(L)) and let ωS = {(a, a); a ∈ S(L)} be a trivial congruence

on S(L). Then (ωS , θ2) is a congruence pair on the triple (S(L), D(L), ϕ(L)).

Indeed, a ≡ 0 (ωS) if and only if a = 0, it means that x ∈ ϕ(L)(a) = ϕ(L)(0) =

[1) holds only for x = 1 and therefore x ≡ 1(θ2).

Now, let a, b ∈ D(L), (a, b) ∈ θ2 and a congruence θ ∈ Con(L) be such that

θD = θ2 (and θS = ωS). Then (a, b) ∈ θ and as f is a strong, we have

fD(a) = f(a) ≡(θ) f(b) = fD(b),

which means that fD is compatible with every congruence θ2 ∈ Con(D(L))

and therefore it is a strong endomorphism on D(L).

For the converse, let f be an endomorphism of L, such that fS and fD are

strong. Let θ ∈ Con(L) and a, b ∈ L with (a, b) ∈ θ.
The modularity of L implies that a = a∗∗ ∧ (a∨ a∗), b = b∗∗ ∧ (b∨ b∗), with

a∗∗, b∗∗ ∈ S(L), a∨ a∗, b∨ b∗ ∈ D(L). We have f(a) = f(a∗∗)∧ f(a∨ a∗) and

f(b) = f(b∗∗) ∧ f(b ∨ b∗).
Now, (a, b) ∈ θ means that a∗∗ ≡ b∗∗(θ), it means a∗∗ ≡ b∗∗(θS) and as fS

is strong, we have also f(a∗∗) = fS(a∗∗) ≡(θS) fS(b∗∗) = f(b∗∗) and therefore

also f(a∗∗) ≡ f(b∗∗)(θ).

Next, as (a, b) ∈ θ, we see that a∗ ≡ b∗(θ), therefore also a∨ a∗ ≡ b∨ b∗(θ),
in other words a∨a∗ ≡ b∨b∗(θD) and as fD is strong, we have also f(a∨a∗) =

fD(a∨ a∗) ≡(θD) fD(b∨ b∗) = f(b∨ b∗) and therefore f(a∨ a∗) ≡ f(b∨ b∗)(θ).
And as f(a∗∗) ≡ f(b∗∗)(θ) and f(a ∨ a∗) ≡ f(b ∨ b∗)(θ), we have also

f(a∗∗) ∧ f(a ∨ a∗) ≡ f(b∗∗) ∧ f(b ∨ b∗)(θ),

it means that f(a) ≡ f(b)(θ) and therefore f is strong on L. �

It is clear that the trivial modular p-algebra has SEKP. We can now prove

Theorem 2.5. Let L be a non-trivial modular p-algebra. Then L satisfies

SEKP if and only if

(i) S(L) ∼= 2 (two element Boolean algebra)

(ii) D(L) has SEKP as {1}-lattice.
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Proof. Assume that L satisfies SEKP. To prove (i), we shall prove that S(L)

has SEKP and, as the only Boolean algebra which has SEKP is 2, the result

follows. Let θ1 ∈ Con(S(L)). The same argument as in the proof of 2.4 shows

that θ1 is a restriction of some θ ∈ Con(L). As θ1 6= ιS(L), we also have θ 6= ιL,

so θ is the kernel of some strong endomorphism h. Then θ1 is the kernel of

hS , which is a strong endomorphism by 2.4.

Therefore, S(L) has SEKP and (i) is done. Similarly we can establish

(ii). Any congruence θ2 ∈ Con(D(L)), θ 6= ιD(L)) is a restriction of some

θ′ ∈ Con(L), θ′ 6= ιL, so θ′ is the kernel of a strong endomorphism h′ and

consequently, θ2 is the kernel of a strong endomorphism h′D.

Conversely, let L satisfy (i) and (ii). Take an arbitrary non-universal congru-

ence θ ∈ Con(L). Then θS is clearly the trivial congruence on S(L) = {0, 1},
which is the kernel of the identity mapping f : S(L) → S(L). As for θD,

there are two possible cases. If θD = ιD(L) then we define g : D(L) → D(L)

as the constant function g(x) = 1 for every x. Clearly, g is a strong homomor-

phism with θD as the kernel. If θD 6= ιD(L), then SEKP for D(L) implies the

existence of a strong g ∈ End(D(L)) with θD as the kernel.

In both cases, the verification that (f, g) is fair is routine. By Theorem 2.2,

(f, g) = (hS , hD) for some h ∈ End(L). As hS and hD are strong, h is strong

by Theorem 2.4. The kernel of h is a congruence θ′ on L such that θ′S = θS ,

θ′D = θD. By Theorem 2.1, θ′ = θ. The proof is complete. �

So, modular p-algebras with SEKP are just the modular {1}-lattices with

SEKP, with a new bottom element 0 added. We admit that this description

is not quite satisfactory, as we do not have a good description of modular

{1}-lattices with SEKP. On the other hand, our result is in full accordance

with the program of reducing the problems on p-algebras into corresponding

problems on Boolean algebras and {1}-lattices.

A satisfactory description for the special case of distributive p-algebras is

given by T. Blyth and H. Silva in [3] and also by G. Fang and J. Fang in [7].

Characterizations [3, Theorem 14] (or [7, Theorem 3.8]) can be reformulated

as follows:

Theorem 2.6. Let L be a distributive p-algebra with 0 6= 1. Then it has SEKP

if and only if

(i) S(L) ∼= 2 (two element Boolean algebra)

(ii) D(L) is isomorphic to the lattice of all cofinite subsets of some set Z.

Combining this and Theorem 2.5 we can characterize distributive {1}-
lattices which have SEKP:

Theorem 2.7. Let L be a distributive {1}-lattice. Then L has SEKP if and

only if it is isomorphic to the lattice of all cofinite subsets of some set Z.

Let us remark that Theorem 2.6 was proved using Priestley duality, without

any decomposition result like 2.5. Hence, 2.7 does not follow from 2.6 alone.
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By an order duality we can use this theorem to describe distributive {0}-
lattices which possess SEKP as {0}-lattices (it means that only bottom element

is a part of the signature and must be preserved by homomorphisms and

endomorphisms).

Corollary 2.8. Let L be a distributive {0}-lattice. Then L has SEKP if and

only if it is isomorphic to the lattice of all finite subsets of some set Z.

If a bounded distributive lattice (with 0, 1 as nullary operations) has SEKP

(it means as {0, 1}-lattice), then it has SEKP also as {1}-lattice. Infinite {1}-
lattices which have SEKP do not have bottom element by Theorem 2.7 and

therefore by [3, Theorem 2] we have

Corollary 2.9. Let L be a bounded distributive lattice. Then L has SEKP if

and only if it is a 1- or 2- element chain.

Obviously, {1}-lattices and {0}-lattices with SEKP also have this property

when considered as lattices (without nullary operations). In the next section

we describe the class of all distributive lattices with SEKP.

3. Unbounded distributive lattices

Now we shall deal with distributive lattices considered as unbounded lattices

(i.e. the top and/or bottom elements - if they exists - are not a part of the

signature and therefore need not be preserved by homomorphisms). Let L be

an unbounded distributive lattice in all what follows.

We shall use Priestley duality for unbounded distributive lattices as a main

tool. We shall follow [5, Section 1.2] to introduce its basic elements. To every

distributive lattice L we assign its Priestley space

D(L) = (Spec(L); 0, 1,⊆, τ),

where Spec(L) be the set of all prime ideals of L, including ∅ and L, 0 = ∅,
1 = L, ⊆ is the set inclusion and τ is the topology on Spec(L), which has as

subbasis all sets Ax = {P ∈ Spec(L);x /∈ P} and their complements By =

{P ∈ Spec(L); y ∈ P} (x, y ∈ L). Thus, D(L) is an ordered topological space.

This space is bounded (as an ordered set), compact (as a topological space)

and totally order-disconnected.

Let O(D(L)) be a set all nonempty proper clopen down sets of D(L),

ordered by the set inclusion (a set U ⊆ Spec(L) is a down set if x ∈ U ,

y ∈ Spec(L) and y ≤ x implies y ∈ U , up sets are defined dually). The

representation theorem says

Theorem 3.1. Every distributive lattice L is isomorphic to O(D(L)). The

isomorphism eL : L→ O(D(L)) can be defined as eL(x) = Ax.
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Congruences on O(D(L)) can be described as follows. Let X be a closed

subset of (Spec(L); τ). Denote

θX = {(A,B) ∈ O(D(L))×O(D(L));A ∩X = B ∩X}

Then θX is a congruence on O(D(L)) and therefore it corresponds to a con-

gruence on L and every congruence on L can be obtained by this construction.

Besides Priestley duality, we use the fact that the compatible functions on

distributive lattices are a well investigated topic. We need two such results,

see [15].

Theorem 3.2. Let L be a distributive lattice, f : L→ L a compatible isotone

function. Then

(1) f is an idempotent homomorphism (a retraction);

(2) Im(f) is a convex sublattice of L.

If f : L→ L is an idempotent homomorphism and [a]f is a congruence block

of a congruence ker(f) = {(a, b) ∈ L2; f(a) = f(b)}, then f(a) ∈ [a]f , because

a ≡ker(f) f(a) by the idempotency.

We shall describe the Priestley spaces of distributive lattices with SEKP.

Let us start with some properties of the order relation ⊆ of Spec(L).

Lemma 3.3. Let L have SEKP. Then L does not have four element chain C4

as a homomorphic image.

Proof. Let C4 = {0, a, b, 1} be a 4-element chain 0 < a < b < 1. For a

contradiction, let r : L → C4 be a surjective homomorphism. Consider the

equivalence θ on L with the equivalence classes r−1({0}), r−1({a, b}) and

r−1({1}). Clearly, θ is a congruence, so θ = ker(f) for some strong endo-

morphism f : L→ L. Thus, f satisfies 3.2 (i), (ii). We have Im(f) = {x, y, z}
for some x < y < z. Obviously, r(x) = 0, r(y) ∈ {a, b}, r(z) = 1. Let us

assume r(y) = a. (The case r(y) = b is similar.) Choose t ∈ L with r(t) = b

and let u = (t ∨ y) ∧ z. Then y ≤ u ≤ z and r(u) = (b ∨ a) ∧ 1 = b, which

shows that y 6= u 6= z, so Im(f) is not convex, a contradiction with 3.2(ii).

�

Lemma 3.4. Let L be a distributive lattice. The following conditions are

equivalent:

(1) There are no proper prime ideals P0, P1, P2 ∈ Spec(L) such that P0 (
P1 ( P2.

(2) L does not have four element chain C4 as a homomorphic image.

Proof. (1) ⇒ (2): Let f : L → C4 be a surjective homomorphism. Let P0 =

f−1({0}), P1 = f−1({0, a}) and P2 = f−1({0, a, b}). As {0} ( {0, a} (
{0, a, b} are proper prime ideals of C4, P0 ( P1 ( P2 are proper prime ideals

of L.
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(2) ⇒ (1): Let P0, P1, P2 ∈ Spec(L) \ {∅, L} with P0 ( P1 ( P2. Then

f : L→ C4 defined by

f(x) =


1 if x ∈ L \ P2

b if x ∈ P2 \ P1

a if x ∈ P1 \ P0

0 if x ∈ P0

is a surjective homomorphism. �

The previous assertions yield the following description of the ordered set

(Spec(L),⊆).

Lemma 3.5. If L has SEKP, then X = Spec(L) \ {∅, L} is a disjoint union

of three antichains A0 ∪ A1 ∪ A2, where A1 = {a ∈ X; (∃b ∈ X)(a < b)}
(”bottom” elements), A2 = {b ∈ X; (∃a ∈ X)(a < b)} (”top” elements) and

A0 = X \ (A1 ∪A2) (”incomparable” elements).

Now we are going to describe the topology of D(L).

Lemma 3.6. Let L be any distributive lattice.

(1) Let P ∈ Spec(L), P 6= ∅, P 6= L. Then P is a discrete point in the

topology τ if and only if there are a, b ∈ L such that a ≺ b and a ∈ P ,

b /∈ P .

(2) Let L have SEKP, P ∈ Spec(L), P 6= ∅, P 6= L. Then P is a discrete

point in the topology τ .

Proof. (1) Let a, b ∈ L be such that a ≺ b and a ∈ P , b /∈ P . We have to prove

that {P} is open in τ .

We know that {P} ⊆ Ab ∩ Ba, Ab ∩ Ba is the intersection of clopen sets

and therefore it is open. It remains to prove that Ab ∩ Ba contains only P .

Let J ∈ Ab ∩Ba. Thus, J is a prime ideal, a ∈ J , b /∈ J .

Let x ∈ P . Then a ∨ x ∈ P . It is clear that a ≤ b ∧ (a ∨ x) ≤ b. The

equality b ∧ (a ∨ x) = b leads to a contradiction, as it implies b ≤ a ∨ x ∈ P ,

while b /∈ P . Since (a, b) is a covering pair, we obtain that b∧ (a∨ x) = a ∈ J .

Since b /∈ J , the primality of J implies that a ∨ x ∈ J . It means that x ∈ J ,

because x ≤ a ∨ x ∈ J . This shows that P ⊆ J . By the symmetry we have

P = J and therefore Ab ∩Ba = {P}.
Conversely, let {P} be open. It is one element set and therefore it must

be an element of a basis of the topology. Every element of the basis is an

intersection of finitely many elements of a subbasis, it means that there are

x1, . . . , xk, y1, . . . , yl ∈ L such that

{P} = Ax1
∩ · · · ∩Axk

∩By1 ∩ · · · ∩Byl .

Since P /∈ {∅, L}, we can assume that k ≥ 1, l ≥ 1. But Ax1
∩ · · · ∩ Axk

=

Ax1∧···∧xk
and By1 ∩ · · · ∩ Byl = By1∨···∨yl , so there are a, b ∈ L such that

{P} = Ab ∩ Ba. Let Q be an ideal in L with a ∈ Q. Then it is clear that
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b /∈ Q ⇔ a ∨ b /∈ Q. Therefore {P} = Aa∨b ∩ Ba. If there is c such that

a < c < a ∨ b, then there are prime ideals P0 and P1 such that a ∈ P0, c /∈ P0

and c ∈ P1, a ∨ b /∈ P1, what means that P0, P1 ∈ Aa∨b ∩ Ba and this is not

possible. Therefore a ≺ a ∨ b, a ∈ P , a ∨ b /∈ P .

(2) Take a congruence θP with blocks P,L \ P , let f : L → L be a strong

endomorphism with ker(f) = θP .

We know that Im(f) has 2 elements and it is a convex sublattice of L. So

that there a, b ∈ L such that Im(f) = {a, b}, a ≺ b and a ∈ P , b ∈ L \ P
because f is idempotent. The result follows from (1). �

Lemma 3.7. Let P be a discrete point for every P ∈ Spec(L) \ {∅, L}. Then,

for every x, y ∈ L, the set Y = Ax ∩By is finite.

Proof. It is clear that Y = Ax ∩By ⊆ Spec(L) \ {∅, L} is a closed set, hence it

is compact. By the assumption, Y =
⋃
{{P};P ∈ Y } is a cover of Y by open

sets and therefore this open cover has a finite subcover, which means that Y

is finite. �

A lattice is called locally finite if every interval is finite.

Lemma 3.8. A distributive lattice L is locally finite if and only if every P ∈
Spec(L) \ {∅, L} is a discrete point in the topology τ .

Proof. Let every interval be finite and P ∈ Spec(L) \ {∅, L}. There are c, d

such that c ∈ P , d /∈ P . Therefore c ∨ d /∈ P , as well. As the interval [c, c ∨ d]

is finite, there are a, b ∈ [c, c ∨ d] such that a ≺ b and a ∈ P, b /∈ P . We see

that P is a discrete point by Lemma 3.6(1).

Conversely, let a < b. Then C = {P ; a ∈ P, b /∈ P} = Ab ∩ Ba is finite

by Lemma 3.7. In a distributive lattice, every two elements can be separated

by a prime ideal. Hence, every two elements of the interval [a, b] can be

separated by some P ∈ C. Hence, the cardinality of [a, b] is at most 2n, where

n = card(C). �

Lemma 3.9. Let L have SEKP. Then for every A ∈ O(D(L)) the sets A∩A2

and A1 \A are finite.

Proof. Suppose that the set C∩A2 is infinite for some C ∈ O(D(L)). Consider

the relation θ on O(D(L)) given by

(A,B) ∈ θ if and only if A ∩A1 = B ∩A1.

Clearly, θ is a congruence. (Notice that A ∩ A1 = B ∩ A1 if and only if

A ∩X1 = B ∩X1, where X1 is the topological closure of A1.) Since O(D(L))

is isomorphic to L, it has SEKP. Let f : O(D(L)) → O(D(L)) be a strong

homomorphism with ker(f) = θ. By 3.2, f is idempotent and Im(f) is a

convex subset of O(D(L)).

Denote A = f(C). Then we have f(A) = A, because f is idempotent. The

set C \ A is clopen and discrete (by 3.6), so it is finite, which implies that
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A ∩ A2 is infinite. Let Q ∈ A ∩ A2. There is P ∈ A1 such that P ⊆ Q,

P ∈ A ∩A1, because A is down set.

The set ↑P = {I ∈ Spec(L);P ⊆ I} is closed (a property of Priestley

spaces), so A∩ ↑P is a closed subset of the discrete set A1 ∪A2, which means

it must be finite, and hence clopen. That is why

B = A \ ↑ P = A \ (A ∩ ↑P )

is a clopen down set.

Clearly, f(B) ⊆ f(A) = A. We have (f(B), B) ∈ ker(f) = θ, hence

f(B) ∩A1 = B ∩A1 = A ∩A1 \ {P}.

The set M = f(B) ∪ {P} is also a clopen down set, f(B) ( M ( A = f(A).

(The inequality M 6= A holds because Q ∈ A\M .) Since M ∩A1 = A∩A1, we

have (A,M) ∈ θ, so f(M) = f(A) = A 6= M , which means that M /∈ Im(f).

This is a contradiction with the requirement that Im(f) is a convex subset of

O(D(L)).

The second statement can be proved using the order duality. The proper

clopen up sets in D(L) form a distributive lattice which is dual to O(D(L)),

so it has SEKP, too. For every A ∈ O(D(L)) its complement B = Spec(L)\A
is a clopen up set, and similarly as above, we can prove that B ∩A1 = A1 \A
is finite. �

Lemma 3.10. Let L have SEKP. Then there exists clopen down set C ∈
O(D(L)) such that A1 ⊆ C and C ∩ A2 = ∅. Moreover, for any such C and

for A ∈ O(D(L)) such that A ⊆ C the interval [A,C] of O(D(L)) is (finite)

Boolean and also for A ∈ O(D(L)) such that C ⊆ A the interval [C,A] of

O(D(L)) is (finite) Boolean.

Proof. Take any A ∈ O(D(L)). By 3.9, the sets A∩A2 and (A1 \A) are finite,

consisting of discrete points, and hence clopen. Therefore,

C = A ∪ (A1 \A) \ (A ∩A2)

is a clopen down set, A1 ⊆ C, A2 ∩ C = ∅.
Let A ∈ O(D(L)), C ⊆ A. By 3.9, C = A ∪M for some finite M ⊆ A2.

Every set X with C ⊆ X ⊆ A is a clopen down set, so interval [C,A] is

isomorphic to the power set of M .

Let A ∈ O(D(L)), A ⊆ C. By 3.9, C = A \M for some finite M ⊆ A1.

Every set X with A ⊆ X ⊆ C is a clopen down set, so interval [A,C] is

isomorphic to the power set of M . �

Now we can prove the following characterization theorem.

Theorem 3.11. Let L be an unbounded distributive lattice. Then the following

are equivalent:

(1) L has SEKP.

(2) L is locally finite and there exists c ∈ L such that for every x < c or x < c

intervals [x, c] (if x < c) and [c, x] (if x > c) are (finite) Boolean.
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Proof. If L has SEKP, it is locally finite by Lemmas 3.6(2) and 3.8. Second

part of the condition (2) follows from Lemma 3.10.

Conversely let (2) be satisfied. We prove that O(D(L)) has SEKP. Let c

be a special element of L from the condition (2). Denote C = Ac = {P ∈
Spec(L); c /∈ P}. Clearly, C ∈ O(D(L)).

First we claim that C \{∅} is an antichain. For contradiction, let P1, P2 ∈ C
be such that P1 ( P2. Let a ∈ P1, b ∈ P2 \P1. Put b′ = c∧b and a′ = c∧b∧a.

We have that b′ ∈ P2, but b′ /∈ P1, a′ ∈ P1. Let Q1 = P1 ∩ [a′, c], Q2 =

P2 ∩ [a′, c]. As b′ ∈ [a′, c], Q1, Q2 are prime ideals in a boolean algebra [a′, c]

such that Q1 ( Q2, because b′ ∈ Q2 \Q1, and this is impossible.

The set Bc = {P ∈ Spec(L); c ∈ P} is the complement of C. Similarly as

above we can prove that Bc \ {L} is an antichain.

The local finiteness of L implies that all points P ∈ O(D(L)) \ {∅, L} are

discrete.

Now let θ be a congruence on O(D(L)). Hence, there exists a (closed) set

U ⊆ Spec(L) such that

(A,B) ∈ θ if and only if A ∩ U = B ∩ U.

We define a function fU : O(D(L))→ O(D(L)) by

fU (A) = (A ∩ U) ∪ (C \ U).

and we claim that (1) fU (A) is always a nonempty proper clopen down set,

(2) fU is a strong endomorphism, and (3) ker(fU ) = θ.

To prove (1), let us firstly show that fU (A) is clopen. It is easy to see

that A ∩ C ⊆ fU (A) ⊆ A ∪ C. Both A ∪ C and A ∩ C are clopen sets, so

their difference (A ∪ C) \ (A ∩ C) is clopen (and hence compact), consisting

of discrete points. It follows that (A ∪ C) \ (A ∩ C) is finite, and every set

between A ∩ C and A ∪ C is clopen. So, fU (A) is a clopen set.

Now we show that fU (A) is a down set. Let Q ∈ fU (A), P ∈ Spec(L) and

P ( Q. If P = ∅, then clearly P ∈ fU (A). Let P 6= ∅. Clearly, Q 6= L, so

the only possibility is P ∈ C, Q ∈ Bc. Now Q ∈ fU (A) implies Q ∈ A ∩ U .

Then P ∈ A, as A is a down set. We distinguish two cases. If P ∈ U , then

P ∈ A ∩ U ⊆ fU (A). If P /∈ U , then P ∈ C \ U . In both cases P ∈ fU (A).

Clearly, L /∈ fU (A), so fU (A) ∈ O(D(L)).

To prove (2), let Z ⊆ Spec(L). We can see that

fU (A) ∩ Z = [(A ∩ Z) ∩ U ] ∪ [(C \ U) ∩ Z].

Let (A,B) ∈ θZ , which means that A ∩ Z = B ∩ Z. Then

fU (A) ∩ Z =[(A ∩ Z) ∩ U ] ∪ [(C \ U) ∩ Z]

=[(B ∩ Z) ∩ U ] ∪ [(C \ U) ∩ Z]

=fU (B) ∩ Z,

which means that (fU (A), fU (A)) ∈ θZ and therefore fU is a compatible func-

tion. It is clear, that fU is an isotone function and by Theorem 3.2(1) every
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compatible isotone function on O(D(L)) (on L) is a homomorphism (it can

be also checked by a routine calculation). That means, that fU is a strong

endomorphism.

To prove (3), we shall use an evident equality fU (A)∩U = A∩U . Now, let

fU (A) = fU (B). Then fU (A) ∩ U = fU (B) ∩ U , which means that A ∩ U =

B ∩ U , or that (A,B) ∈ θ.
For the opposite inclusion, let (A,B) ∈ θ, which means that A∩U = B∩U .

Then also

fU (A) = (A ∩ U) ∪ (C \ U) = (B ∩ U) ∪ (C \ U) = fU (B)

and we see that ker(fU ) = θ. �

If L is finite, it is locally finite, so that we can omit this fact from the

condition (2) in Theorem 3.11.

Theorem 3.12. Let L be a finite distributive lattice. Then the following are

equivalent:

(1) L has SEKP;

(2) L does not have C4 as a homomorphic image;

(3) the poset P (L) of all proper prime ideals (and/or Ji(L) of all join irre-

ducible elements) has length (height) at most 1;

(4) there exists c ∈ L such that for every x < c or x < c intervals [x, c] (if

x < c) and [c, x] (if x > c) are Boolean;

Proof. (1) ⇒ (2) is Lemma 3.3, (2) ⇔ (3) holds by Lemma 3.4, (1) ⇔ (4) by

Theorem 3.11.

So that it is enough to prove for example the implication (3)⇒ (4). But in

the finite case it is enough to take the down set

C = {P ∈ P (L); (∃Q ∈ P (L)(P ( Q))}

and the corresponding element c ∈ L has all necessary properties, because

every subset and every superset of C is a down set. �

Finally, let us present one example. Let C3 be a 3-element chain 0 < a < 1.

Let I be any set and let L be the sublattice of CI3 consisting of all (xi)i∈I with

{i ∈ I : xi 6= a} finite. Then L has SEKP. Indeed, it is easy to see that L is

locally finite, and c = (ci)i∈I with ci = a for every i satisfies 3.11(2).

References

[1] Balbes, R., Dwinger, Ph.: Distributive lattices. Univ. Missouri Press, Columbia,
Missouri, (1974)

[2] Blyth, T.S., Fang, J., Silva, H.J.: The endomorphism kernel property in finite
distributive lattices and de Morgan algebras. Communications in Algebra 32 (6),

2225–2242 (2004)
[3] Blyth, T.S., Silva, H.J.: The strong endomorphism kernel property in Ockham

algebras. Communications in Algebra 36 (5), 1682–1694 (2004)
[4] Blyth, T.S., Fang, J., Wang, L.-B.: The strong endomorphism kernel property in

distributive double p-algebras. Sci. Math. Jpn. 76 (2), 227–234 (2013)



Vol. 00, XX The strong endomorphism kernel property for modular p-algebras 13

[5] Clark, D.M., Davey, B.A.: Natural Dualities for the Working Algebraist. Cambridge
University Press, (1998)

[6] Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Second edition,

Cambridge University Press, Cambridge (2002)
[7] Fang, G., Fang, J.: The strong endomorphism kernel property in distributive

p-algebras. Southeast Asian Bull. of Math. 37, 491–497 (2013)

[8] Fang, J., Sun, Z.-J.: Semilattices with the strong endomorphism kernel property.
Algebra Universalis 70 (4), 393–401 (2013)

[9] Gaitan, B., Cortes, Y.J.: The endomorphism kernel property in finite Stone algebras.
JP J. of Algebra, Number Theory and Appl. 14, 51–64 (2009)

[10] Grätzer, G.: Lattice theory: Foundation. Birkhäuser Verlag, Basel, (2011)
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