The strong endomorphism kernel property for modular p-algebras and for distributive lattices

Jaroslav Guričan and Miroslav Ploščica

Abstract

We study strong endomorphism kernel property (SEKP) for some classes of universal algebras. Using Katriňák-Mederly triple construction we prove a universal equivalent condition under which a modular p-algebra has SEKP. As a consequence, we characterize distributive lattices with top element which enjoy SEKP. Using Priestley duality we also characterize unbounded distributive lattices which have SEKP.

1. Introduction

The concept of the (strong) endomorphism kernel property for an universal algebra has been introduced by Blyth, Fang and Silva as follows. (See [2] and [3].)

Definition 1.1. An algebra A has the endomorphism kernel property (EKP) if every congruence relation on A different from the universal congruence $\iota_{A}=$ $A \times A$ is the kernel of an endomorphism on A.

Let $\theta \in \operatorname{Con}(A)$ be a congruence on A. We say that a mapping $f: A \rightarrow A$ is compatible with θ if $a \equiv b(\theta)$ implies $f(a) \equiv f(b)(\theta)$. An endomorphism of A is called strong), if it is compatible with every congruence $\theta \in \operatorname{Con}(A)$.

The compatibility of functions (of any arity) with congruences has been widely studied in various contexts. We refer to the monograph [12] for an overview. Compatible functions are sometimes called "congruence preserving functions" or "functions with substitution property".

Definition 1.2. An algebra A has the strong endomorphism kernel property (SEKP) if every congruence relation on A different from the universal congruence ι_{A} is the kernel of a strong endomorphism of A.

The exception for the universal congruence ι_{A} appears in the above definitions with the purpose that algebras with two or more nullary operations have a chance to satisfy the conditions. It is not necessary for algebras with

[^0]one-element subagebras, such as distributive lattices in the second half of this paper.

Blyth and Silva considered the case of Ockham algebras and in particular of MS-algebras and provided a full characterization of MS-algebras having SEKP. For instance, a Boolean algebra has SEKP if and only if it has exactly two elements. Further Blyth, J. Fang and Wang in [4] proved a full characterization of finite distributive double p-algebras and finite double Stone algebras having SEKP. SEKP for distributive p-algebras and Stone algebras has been studied and fully characterized by G. Fang and J. Fang in [7]. J. Fang and Sun fully described semilattices with SEKP in [8]. The main approach in papers [3], [4] and [7] is to regard algebras in question as Ockham algebras and use the Priestley duality.

The original paper [3] of Blyth and Silva contains one additional assumption, namely that all considered algebras contain two nullary operations (denoted by 0 and $1,0 \neq 1)$. We do not keep this assumption in our paper and we would like to remark that in our more general context some of the results from [3] are no longer true. For instance, Corollary 1 in [3] says that a finite algebra with SEKP is directly indecomposable, while it is easy to check that the 4 -element lattice $\{0,1\}^{2}$ has SEKP. Also, all one-element algebras trivially have SEKP.

2. SEKP and modular p-algebras

We shall use Katriňák-Mederly triple construction for Stone algebras and modular p-algebras (see [13]) in this section. This approach enables us to prove some general characterization of SEKP for modular p-algebras and using this, to translate results of the paper [3] or [7] to the case of distributive $\{1\}$-lattices ($\{0\}$-lattices).

A (modular, distributive) p-algebra is an algebra $L=\left(L ; \vee, \wedge,{ }^{*}, 0,1\right)$ of type $(2,2,1,0,0)$, where $(L ; \vee, \wedge, 0,1)$ is a bounded (modular, distributive) lattice and, for every $a \in L$, the element a^{*} is a pseudocomplement of a, i.e. $x \leq a^{*}$ if and only if $x \wedge a=0$. The standard results on p-algebras may be found in [10].

An S-algebra is a p-algebra satisfying the Stone identity $x^{*} \vee x^{* *}=1$. The S-algebra L is a Stone algebra, if it is distributive.

Every modular p-algebra possesses two important parts: the Boolean algebra of closed elements $\left(S(L) ;+, \wedge,{ }^{*}, 0,1\right)$, where $x \in S(L)$ if and only if $x=x^{* *}(S(L)$ stands for a skeleton of $L)$ and

$$
x^{* *}+y^{* *}=(x \vee y)^{* *}
$$

for every $x, y \in L$; the second key subset of L is the filter $D(L)$ of dense elements, that means, x is dense if and only if $x^{*}=0$. We regard $D(L)$ as a lattice with 1 , that is, an algebra of type $(2,2,0)$. A modular p-algebra L is uniquely determined (up to isomorphism) by its associated triple $(S(L), D(L), \varphi(L)$),
where $\varphi(L)$ is a mapping of $S(L)$ into the lattice of all filters of $D(L)$ defined by

$$
\varphi(L): a \mapsto D(L) \cap\left[a^{*}\right)
$$

for every $a \in S(L)$ (see [13, Theorems 2 and 4]).
The triple construction of a modular p-algebra L enables to decompose any congruence relation $\theta \in \operatorname{Con}(L)$ and any endomorphism $f \in \operatorname{End}(L)$ of a modular p-algebra L as follows.

Theorem 2.1. (See [13].) Let L be a modular p-algebra. For every $\theta \in \operatorname{Con}(L)$ the restrictions $\theta_{S}=\theta \upharpoonright S(L)$ and $\theta_{D}=\theta \upharpoonright D(L)$ are congruences on $S(L)$ and $D(L)$, respectively. A pair $\left(\theta_{1}, \theta_{2}\right) \in \operatorname{Con}(S(L)) \times \operatorname{Con}(D(L))$ is equal to $\left(\theta_{S}, \theta_{D}\right)$ for some congruence $\theta \in \operatorname{Con}(L)$ iff

$$
a \equiv 0\left(\theta_{1}\right) \text { implies } x \equiv 1\left(\theta_{2}\right) \text { for all } x \in \varphi(L)(a) .
$$

The pair $\left(\theta_{S}, \theta_{D}\right)$ determines θ uniquely.
A pair $\left(\theta_{1}, \theta_{2}\right)$ satisfying the condition from Theorem 2.1 is called a congruence pair of L.

Theorem 2.2. (See [13].) Let L be a modular p-algebra. For every $f \in$ $\operatorname{End}(L)$ the restrictions $f_{S}=f \upharpoonright S(L)$ and $f_{D}=f \upharpoonright D(L)$ are endomorphisms of $S(L)$ and $D(L)$, respectively. A pair $(h, g) \in \operatorname{End}(S(L)) \times \operatorname{End}(D(L))$ is equal to $\left(f_{S}, f_{D}\right)$ for some $f \in \operatorname{End}(L)$ iff the conditions
(i) $g\left(a \vee a^{*}\right)=h(a) \vee h(a)^{*}$;
(ii) $\{g(x) ; x \in \varphi(L)(a)\} \subseteq \varphi(L)(h(a))$;
are satisfied for all $a \in S(L)$.
The pair $\left(f_{S}, f_{D}\right)$ determines f uniquely.
A pair (h, g) satisfying the conditions from Theorem 2.2 is called fair.
Now we can begin our investigation of SEKP for modular p-algebras. By [11, Theorem 2.6(i)] we know that if a modular p-algebra L has SEKP, then it is an S-algebra (compare also with Corollary 3.2 of [7]).

In fact, we can say something more precise. Given a p-algebra L, we may form the Glivenko congruence Γ on L as follows:

$$
x \equiv y(\Gamma) \quad \text { iff } \quad x^{*}=y^{*} \quad \text { iff } \quad x^{* *}=y^{* *} .
$$

Each Glivenko congruence class $[c] \Gamma$ contains a unique closed element $a=c^{* *}$, which is the greatest element of $[c] \Gamma$. Thus every Glivenko congruence class can be expressed as $[a] \Gamma$ for some $a \in S(L)$.

Lemma 2.3. Let Γ be the Glivenko congruence on a modular p-algebra L. Then Γ is a kernel of a strong endomorphism on L if and only if L is an S-algebra.

Proof. The proof is the same as for [11, Lemma 2.3], we need only to add that for an S-algebra L, the mapping $h: x \mapsto x^{* *}$ on L is a strong endomorphism on L.

Now we can prove our first result
Theorem 2.4. Let L be a modular p-algebra. An endomorphism $f: L \rightarrow L$ is strong if and only if f_{S} and f_{D} are strong.

Proof. Let $\theta_{1} \in \operatorname{Con}(S(L))$ and let $\iota_{D}=D(L) \times D(L)$ be the universal congruence on $D(L)$. Then $\left(\theta_{1}, \iota_{D}\right)$ is a congruence pair of L (because now we have $x \equiv 1\left(\iota_{D}\right)$ for any $\left.x \in D(L)\right)$. It means that there is a congruence $\theta \in \operatorname{Con}(L)$ such that $\theta_{S}=\theta_{1}\left(\right.$ and $\left.\theta_{D}=\iota_{D}\right)$. Let $a, b \in S(L),(a, b) \in \theta_{1}$. Then $(a, b) \in \theta$ and, as f is a strong, we see that

$$
f_{S}(a)=f(a) \equiv_{(\theta)} f(b)=f_{S}(b)
$$

which means that f_{S} is compatible with every congruence $\theta_{1} \in \operatorname{Con}(S(L))$ and therefore it is a strong endomorphism on $S(L)$.

Let $\theta_{2} \in \operatorname{Con}(D(L))$ and let $\omega_{S}=\{(a, a) ; a \in S(L)\}$ be a trivial congruence on $S(L)$. Then $\left(\omega_{S}, \theta_{2}\right)$ is a congruence pair on the triple $(S(L), D(L), \varphi(L))$. Indeed, $a \equiv 0\left(\omega_{S}\right)$ if and only if $a=0$, it means that $x \in \varphi(L)(a)=\varphi(L)(0)=$ [1) holds only for $x=1$ and therefore $x \equiv 1\left(\theta_{2}\right)$.

Now, let $a, b \in D(L),(a, b) \in \theta_{2}$ and a congruence $\theta \in \operatorname{Con}(L)$ be such that $\theta_{D}=\theta_{2}\left(\right.$ and $\left.\theta_{S}=\omega_{S}\right)$. Then $(a, b) \in \theta$ and as f is a strong, we have

$$
f_{D}(a)=f(a) \equiv_{(\theta)} f(b)=f_{D}(b)
$$

which means that f_{D} is compatible with every congruence $\theta_{2} \in \operatorname{Con}(D(L))$ and therefore it is a strong endomorphism on $D(L)$.

For the converse, let f be an endomorphism of L, such that f_{S} and f_{D} are strong. Let $\theta \in \operatorname{Con}(L)$ and $a, b \in L$ with $(a, b) \in \theta$.

The modularity of L implies that $a=a^{* *} \wedge\left(a \vee a^{*}\right), b=b^{* *} \wedge\left(b \vee b^{*}\right)$, with $a^{* *}, b^{* *} \in S(L), a \vee a^{*}, b \vee b^{*} \in D(L)$. We have $f(a)=f\left(a^{* *}\right) \wedge f\left(a \vee a^{*}\right)$ and $f(b)=f\left(b^{* *}\right) \wedge f\left(b \vee b^{*}\right)$.

Now, $(a, b) \in \theta$ means that $a^{* *} \equiv b^{* *}(\theta)$, it means $a^{* *} \equiv b^{* *}\left(\theta_{S}\right)$ and as f_{S} is strong, we have also $f\left(a^{* *}\right)=f_{S}\left(a^{* *}\right) \equiv\left(\theta_{S}\right) f_{S}\left(b^{* *}\right)=f\left(b^{* *}\right)$ and therefore also $f\left(a^{* *}\right) \equiv f\left(b^{* *}\right)(\theta)$.

Next, as $(a, b) \in \theta$, we see that $a^{*} \equiv b^{*}(\theta)$, therefore also $a \vee a^{*} \equiv b \vee b^{*}(\theta)$, in other words $a \vee a^{*} \equiv b \vee b^{*}\left(\theta_{D}\right)$ and as f_{D} is strong, we have also $f\left(a \vee a^{*}\right)=$ $f_{D}\left(a \vee a^{*}\right) \equiv_{\left(\theta_{D}\right)} f_{D}\left(b \vee b^{*}\right)=f\left(b \vee b^{*}\right)$ and therefore $f\left(a \vee a^{*}\right) \equiv f\left(b \vee b^{*}\right)(\theta)$.

And as $f\left(a^{* *}\right) \equiv f\left(b^{* *}\right)(\theta)$ and $f\left(a \vee a^{*}\right) \equiv f\left(b \vee b^{*}\right)(\theta)$, we have also

$$
f\left(a^{* *}\right) \wedge f\left(a \vee a^{*}\right) \equiv f\left(b^{* *}\right) \wedge f\left(b \vee b^{*}\right)(\theta)
$$

it means that $f(a) \equiv f(b)(\theta)$ and therefore f is strong on L.
It is clear that the trivial modular p-algebra has SEKP. We can now prove
Theorem 2.5. Let L be a non-trivial modular p-algebra. Then L satisfies SEKP if and only if
(i) $S(L) \cong \mathbf{2}$ (two element Boolean algebra)
(ii) $D(L)$ has SEKP as $\{1\}$-lattice.

Proof. Assume that L satisfies SEKP. To prove (i), we shall prove that $S(L)$ has SEKP and, as the only Boolean algebra which has SEKP is 2, the result follows. Let $\theta_{1} \in \operatorname{Con}(S(L))$. The same argument as in the proof of 2.4 shows that θ_{1} is a restriction of some $\theta \in \operatorname{Con}(L)$. As $\theta_{1} \neq \iota_{S(L)}$, we also have $\theta \neq \iota_{L}$, so θ is the kernel of some strong endomorphism h. Then θ_{1} is the kernel of h_{S}, which is a strong endomorphism by 2.4.

Therefore, $S(L)$ has SEKP and (i) is done. Similarly we can establish (ii). Any congruence $\theta_{2} \in \operatorname{Con}(D(L)), \theta \neq \iota_{D(L))}$ is a restriction of some $\theta^{\prime} \in \operatorname{Con}(L), \theta^{\prime} \neq \iota_{L}$, so θ^{\prime} is the kernel of a strong endomorphism h^{\prime} and consequently, θ_{2} is the kernel of a strong endomorphism h_{D}^{\prime}.

Conversely, let L satisfy (i) and (ii). Take an arbitrary non-universal congruence $\theta \in \operatorname{Con}(L)$. Then θ_{S} is clearly the trivial congruence on $S(L)=\{0,1\}$, which is the kernel of the identity mapping $f: S(L) \rightarrow S(L)$. As for θ_{D}, there are two possible cases. If $\theta_{D}=\iota_{D(L)}$ then we define $g: D(L) \rightarrow D(L)$ as the constant function $g(x)=1$ for every x. Clearly, g is a strong homomorphism with θ_{D} as the kernel. If $\theta_{D} \neq \iota_{D(L)}$, then SEKP for $D(L)$ implies the existence of a strong $g \in \operatorname{End}(D(L))$ with θ_{D} as the kernel.

In both cases, the verification that (f, g) is fair is routine. By Theorem 2.2, $(f, g)=\left(h_{S}, h_{D}\right)$ for some $h \in \operatorname{End}(L)$. As h_{S} and h_{D} are strong, h is strong by Theorem 2.4. The kernel of h is a congruence θ^{\prime} on L such that $\theta_{S}^{\prime}=\theta_{S}$, $\theta_{D}^{\prime}=\theta_{D}$. By Theorem 2.1, $\theta^{\prime}=\theta$. The proof is complete.

So, modular p-algebras with SEKP are just the modular \{1\}-lattices with SEKP, with a new bottom element 0 added. We admit that this description is not quite satisfactory, as we do not have a good description of modular $\{1\}$-lattices with SEKP. On the other hand, our result is in full accordance with the program of reducing the problems on p-algebras into corresponding problems on Boolean algebras and $\{1\}$-lattices.

A satisfactory description for the special case of distributive p-algebras is given by T. Blyth and H. Silva in [3] and also by G. Fang and J. Fang in [7]. Characterizations [3, Theorem 14] (or [7, Theorem 3.8]) can be reformulated as follows:

Theorem 2.6. Let L be a distributive p-algebra with $0 \neq 1$. Then it has SEKP if and only if
(i) $S(L) \cong \mathbf{2}$ (two element Boolean algebra)
(ii) $D(L)$ is isomorphic to the lattice of all cofinite subsets of some set Z.

Combining this and Theorem 2.5 we can characterize distributive $\{1\}$ lattices which have SEKP:

Theorem 2.7. Let L be a distributive $\{1\}$-lattice. Then L has SEKP if and only if it is isomorphic to the lattice of all cofinite subsets of some set Z.

Let us remark that Theorem 2.6 was proved using Priestley duality, without any decomposition result like 2.5 . Hence, 2.7 does not follow from 2.6 alone.

By an order duality we can use this theorem to describe distributive $\{0\}$ lattices which possess SEKP as $\{0\}$-lattices (it means that only bottom element is a part of the signature and must be preserved by homomorphisms and endomorphisms).

Corollary 2.8. Let L be a distributive $\{0\}$-lattice. Then L has SEKP if and only if it is isomorphic to the lattice of all finite subsets of some set Z.

If a bounded distributive lattice (with 0,1 as nullary operations) has SEKP (it means as $\{0,1\}$-lattice), then it has SEKP also as $\{1\}$-lattice. Infinite $\{1\}$ lattices which have SEKP do not have bottom element by Theorem 2.7 and therefore by [3, Theorem 2] we have

Corollary 2.9. Let L be a bounded distributive lattice. Then L has SEKP if and only if it is a 1- or 2- element chain.

Obviously, $\{1\}$-lattices and $\{0\}$-lattices with SEKP also have this property when considered as lattices (without nullary operations). In the next section we describe the class of all distributive lattices with SEKP.

3. Unbounded distributive lattices

Now we shall deal with distributive lattices considered as unbounded lattices (i.e. the top and/or bottom elements - if they exists - are not a part of the signature and therefore need not be preserved by homomorphisms). Let L be an unbounded distributive lattice in all what follows.

We shall use Priestley duality for unbounded distributive lattices as a main tool. We shall follow [5, Section 1.2] to introduce its basic elements. To every distributive lattice L we assign its Priestley space

$$
\mathbf{D}(L)=(S \operatorname{pec}(L) ; 0,1, \subseteq, \tau),
$$

where $\operatorname{Spec}(L)$ be the set of all prime ideals of L, including \emptyset and $L, 0=\emptyset$, $1=L, \subseteq$ is the set inclusion and τ is the topology on $\operatorname{Spec}(L)$, which has as subbasis all sets $A_{x}=\{P \in \operatorname{Spec}(L) ; x \notin P\}$ and their complements $B_{y}=$ $\{P \in \operatorname{Spec}(L) ; y \in P\}(x, y \in L)$. Thus, $\mathbf{D}(L)$ is an ordered topological space. This space is bounded (as an ordered set), compact (as a topological space) and totally order-disconnected.

Let $\mathcal{O}(\mathbf{D}(L))$ be a set all nonempty proper clopen down sets of $\mathbf{D}(L)$, ordered by the set inclusion (a set $U \subseteq \operatorname{Spec}(L)$ is a down set if $x \in U$, $y \in \operatorname{Spec}(L)$ and $y \leq x$ implies $y \in U$, up sets are defined dually). The representation theorem says

Theorem 3.1. Every distributive lattice L is isomorphic to $\mathcal{O}(\mathbf{D}(L))$. The isomorphism $e_{L}: L \rightarrow \mathcal{O}(\mathbf{D}(L))$ can be defined as $e_{L}(x)=A_{x}$.

Congruences on $\mathcal{O}(\mathbf{D}(L))$ can be described as follows. Let X be a closed subset of $(\operatorname{Spec}(L) ; \tau)$. Denote

$$
\theta_{X}=\{(A, B) \in \mathcal{O}(\mathbf{D}(L)) \times \mathcal{O}(\mathbf{D}(L)) ; A \cap X=B \cap X\}
$$

Then θ_{X} is a congruence on $\mathcal{O}(\mathbf{D}(L))$ and therefore it corresponds to a congruence on L and every congruence on L can be obtained by this construction.

Besides Priestley duality, we use the fact that the compatible functions on distributive lattices are a well investigated topic. We need two such results, see [15].

Theorem 3.2. Let L be a distributive lattice, $f: L \rightarrow L$ a compatible isotone function. Then
(1) f is an idempotent homomorphism (a retraction);
(2) $\operatorname{Im}(f)$ is a convex sublattice of L.

If $f: L \rightarrow L$ is an idempotent homomorphism and $[a]_{f}$ is a congruence block of a congruence $\operatorname{ker}(f)=\left\{(a, b) \in L^{2} ; f(a)=f(b)\right\}$, then $f(a) \in[a]_{f}$, because $a \equiv_{\operatorname{ker}(f)} f(a)$ by the idempotency.

We shall describe the Priestley spaces of distributive lattices with SEKP. Let us start with some properties of the order relation \subseteq of $\operatorname{Spec}(L)$.

Lemma 3.3. Let L have SEKP. Then L does not have four element chain C_{4} as a homomorphic image.

Proof. Let $C_{4}=\{0, a, b, 1\}$ be a 4-element chain $0<a<b<1$. For a contradiction, let $r: L \rightarrow C_{4}$ be a surjective homomorphism. Consider the equivalence θ on L with the equivalence classes $r^{-1}(\{0\}), r^{-1}(\{a, b\})$ and $r^{-1}(\{1\})$. Clearly, θ is a congruence, so $\theta=\operatorname{ker}(f)$ for some strong endomorphism $f: L \rightarrow L$. Thus, f satisfies 3.2 (i), (ii). We have $\operatorname{Im}(f)=\{x, y, z\}$ for some $x<y<z$. Obviously, $r(x)=0, r(y) \in\{a, b\}, r(z)=1$. Let us assume $r(y)=a$. (The case $r(y)=b$ is similar.) Choose $t \in L$ with $r(t)=b$ and let $u=(t \vee y) \wedge z$. Then $y \leq u \leq z$ and $r(u)=(b \vee a) \wedge 1=b$, which shows that $y \neq u \neq z$, so $\operatorname{Im}(f)$ is not convex, a contradiction with 3.2(ii).

Lemma 3.4. Let L be a distributive lattice. The following conditions are equivalent:
(1) There are no proper prime ideals $P_{0}, P_{1}, P_{2} \in \operatorname{Spec}(L)$ such that $P_{0} \subsetneq$ $P_{1} \subsetneq P_{2}$.
(2) L does not have four element chain C_{4} as a homomorphic image.

Proof. (1) $\Rightarrow(2)$: Let $f: L \rightarrow C_{4}$ be a surjective homomorphism. Let $P_{0}=$ $f^{-1}(\{0\}), P_{1}=f^{-1}(\{0, a\})$ and $P_{2}=f^{-1}(\{0, a, b\})$. As $\{0\} \subsetneq\{0, a\} \subsetneq$ $\{0, a, b\}$ are proper prime ideals of $C_{4}, P_{0} \subsetneq P_{1} \subsetneq P_{2}$ are proper prime ideals of L.
$(2) \Rightarrow(1):$ Let $P_{0}, P_{1}, P_{2} \in \operatorname{Spec}(L) \backslash\{\emptyset, L\}$ with $P_{0} \subsetneq P_{1} \subsetneq P_{2}$. Then $f: L \rightarrow C_{4}$ defined by

$$
f(x)=\left\{\begin{array}{l}
1 \text { if } x \in L \backslash P_{2} \\
b \text { if } x \in P_{2} \backslash P_{1} \\
a \text { if } x \in P_{1} \backslash P_{0} \\
0 \text { if } x \in P_{0}
\end{array}\right.
$$

is a surjective homomorphism.
The previous assertions yield the following description of the ordered set $(\operatorname{Spec}(L), \subseteq)$.

Lemma 3.5. If L has $S E K P$, then $X=\operatorname{Spec}(L) \backslash\{\emptyset, L\}$ is a disjoint union of three antichains $A_{0} \cup A_{1} \cup A_{2}$, where $A_{1}=\{a \in X ;(\exists b \in X)(a<b)\}$ ("bottom" elements), $A_{2}=\{b \in X ;(\exists a \in X)(a<b)\}$ ("top" elements) and $A_{0}=X \backslash\left(A_{1} \cup A_{2}\right)$ ("incomparable" elements).

Now we are going to describe the topology of $\mathbf{D}(L)$.
Lemma 3.6. Let L be any distributive lattice.
(1) Let $P \in \operatorname{Spec}(L), P \neq \emptyset, P \neq L$. Then P is a discrete point in the topology τ if and only if there are $a, b \in L$ such that $a \prec b$ and $a \in P$, $b \notin P$.
(2) Let L have $\operatorname{SEKP}, P \in \operatorname{Spec}(L), P \neq \emptyset, P \neq L$. Then P is a discrete point in the topology τ.

Proof. (1) Let $a, b \in L$ be such that $a \prec b$ and $a \in P, b \notin P$. We have to prove that $\{P\}$ is open in τ.

We know that $\{P\} \subseteq A_{b} \cap B_{a}, A_{b} \cap B_{a}$ is the intersection of clopen sets and therefore it is open. It remains to prove that $A_{b} \cap B_{a}$ contains only P. Let $J \in A_{b} \cap B_{a}$. Thus, J is a prime ideal, $a \in J, b \notin J$.

Let $x \in P$. Then $a \vee x \in P$. It is clear that $a \leq b \wedge(a \vee x) \leq b$. The equality $b \wedge(a \vee x)=b$ leads to a contradiction, as it implies $b \leq a \vee x \in P$, while $b \notin P$. Since (a, b) is a covering pair, we obtain that $b \wedge(a \vee x)=a \in J$. Since $b \notin J$, the primality of J implies that $a \vee x \in J$. It means that $x \in J$, because $x \leq a \vee x \in J$. This shows that $P \subseteq J$. By the symmetry we have $P=J$ and therefore $A_{b} \cap B_{a}=\{P\}$.

Conversely, let $\{P\}$ be open. It is one element set and therefore it must be an element of a basis of the topology. Every element of the basis is an intersection of finitely many elements of a subbasis, it means that there are $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{l} \in L$ such that

$$
\{P\}=A_{x_{1}} \cap \cdots \cap A_{x_{k}} \cap B_{y_{1}} \cap \cdots \cap B_{y_{l}} .
$$

Since $P \notin\{\emptyset, L\}$, we can assume that $k \geq 1, l \geq 1$. But $A_{x_{1}} \cap \cdots \cap A_{x_{k}}=$ $A_{x_{1} \wedge \cdots \wedge x_{k}}$ and $B_{y_{1}} \cap \cdots \cap B_{y_{l}}=B_{y_{1} \vee \cdots \vee y_{l}}$, so there are $a, b \in L$ such that $\{P\}=A_{b} \cap B_{a}$. Let Q be an ideal in L with $a \in Q$. Then it is clear that
$b \notin Q \Leftrightarrow a \vee b \notin Q$. Therefore $\{P\}=A_{a \vee b} \cap B_{a}$. If there is c such that $a<c<a \vee b$, then there are prime ideals P_{0} and P_{1} such that $a \in P_{0}, c \notin P_{0}$ and $c \in P_{1}, a \vee b \notin P_{1}$, what means that $P_{0}, P_{1} \in A_{a \vee b} \cap B_{a}$ and this is not possible. Therefore $a \prec a \vee b, a \in P, a \vee b \notin P$.
(2) Take a congruence θ_{P} with blocks $P, L \backslash P$, let $f: L \rightarrow L$ be a strong endomorphism with $\operatorname{ker}(f)=\theta_{P}$.

We know that $\operatorname{Im}(f)$ has 2 elements and it is a convex sublattice of L. So that there $a, b \in L$ such that $\operatorname{Im}(f)=\{a, b\}, a \prec b$ and $a \in P, b \in L \backslash P$ because f is idempotent. The result follows from (1).

Lemma 3.7. Let P be a discrete point for every $P \in \operatorname{Spec}(L) \backslash\{\emptyset, L\}$. Then, for every $x, y \in L$, the set $Y=A_{x} \cap B_{y}$ is finite.

Proof. It is clear that $Y=A_{x} \cap B_{y} \subseteq \operatorname{Spec}(L) \backslash\{\emptyset, L\}$ is a closed set, hence it is compact. By the assumption, $Y=\bigcup\{\{P\} ; P \in Y\}$ is a cover of Y by open sets and therefore this open cover has a finite subcover, which means that Y is finite.

A lattice is called locally finite if every interval is finite.
Lemma 3.8. A distributive lattice L is locally finite if and only if every $P \in$ $\operatorname{Spec}(L) \backslash\{\emptyset, L\}$ is a discrete point in the topology τ.

Proof. Let every interval be finite and $P \in \operatorname{Spec}(L) \backslash\{\emptyset, L\}$. There are c, d such that $c \in P, d \notin P$. Therefore $c \vee d \notin P$, as well. As the interval $[c, c \vee d]$ is finite, there are $a, b \in[c, c \vee d]$ such that $a \prec b$ and $a \in P, b \notin P$. We see that P is a discrete point by Lemma 3.6(1).

Conversely, let $a<b$. Then $C=\{P ; a \in P, b \notin P\}=A_{b} \cap B_{a}$ is finite by Lemma 3.7. In a distributive lattice, every two elements can be separated by a prime ideal. Hence, every two elements of the interval $[a, b]$ can be separated by some $P \in C$. Hence, the cardinality of $[a, b]$ is at most 2^{n}, where $n=\operatorname{card}(C)$.

Lemma 3.9. Let L have $S E K P$. Then for every $A \in \mathcal{O}(\mathbf{D}(L))$ the sets $A \cap A_{2}$ and $A_{1} \backslash A$ are finite.

Proof. Suppose that the set $C \cap A_{2}$ is infinite for some $C \in \mathcal{O}(\mathbf{D}(L))$. Consider the relation θ on $\mathcal{O}(\mathbf{D}(L))$ given by

$$
(A, B) \in \theta \text { if and only if } A \cap A_{1}=B \cap A_{1} .
$$

Clearly, θ is a congruence. (Notice that $A \cap A_{1}=B \cap A_{1}$ if and only if $A \cap X_{1}=B \cap X_{1}$, where X_{1} is the topological closure of A_{1}.) Since $\mathcal{O}(\mathbf{D}(L))$ is isomorphic to L, it has SEKP. Let $f: \mathcal{O}(\mathbf{D}(L)) \rightarrow \mathcal{O}(\mathbf{D}(L))$ be a strong homomorphism with $\operatorname{ker}(f)=\theta$. By 3.2, f is idempotent and $\operatorname{Im}(f)$ is a convex subset of $\mathcal{O}(\mathbf{D}(L))$.

Denote $A=f(C)$. Then we have $f(A)=A$, because f is idempotent. The set $C \backslash A$ is clopen and discrete (by 3.6), so it is finite, which implies that
$A \cap A_{2}$ is infinite. Let $Q \in A \cap A_{2}$. There is $P \in A_{1}$ such that $P \subseteq Q$, $P \in A \cap A_{1}$, because A is down set.

The set $\uparrow P=\{I \in \operatorname{Spec}(L) ; P \subseteq I\}$ is closed (a property of Priestley spaces), so $A \cap \uparrow P$ is a closed subset of the discrete set $A_{1} \cup A_{2}$, which means it must be finite, and hence clopen. That is why

$$
B=A \backslash \uparrow P=A \backslash(A \cap \uparrow P)
$$

is a clopen down set.
Clearly, $f(B) \subseteq f(A)=A$. We have $(f(B), B) \in \operatorname{ker}(f)=\theta$, hence

$$
f(B) \cap A_{1}=B \cap A_{1}=A \cap A_{1} \backslash\{P\}
$$

The set $M=f(B) \cup\{P\}$ is also a clopen down set, $f(B) \subsetneq M \subsetneq A=f(A)$. (The inequality $M \neq A$ holds because $Q \in A \backslash M$.) Since $M \cap A_{1}=A \cap A_{1}$, we have $(A, M) \in \theta$, so $f(M)=f(A)=A \neq M$, which means that $M \notin \operatorname{Im}(f)$. This is a contradiction with the requirement that $\operatorname{Im}(f)$ is a convex subset of $\mathcal{O}(\mathbf{D}(L))$.

The second statement can be proved using the order duality. The proper clopen up sets in $\mathbf{D}(L)$ form a distributive lattice which is dual to $\mathcal{O}(\mathbf{D}(L))$, so it has SEKP, too. For every $A \in \mathcal{O}(\mathbf{D}(L))$ its complement $B=\operatorname{Spec}(L) \backslash A$ is a clopen up set, and similarly as above, we can prove that $B \cap A_{1}=A_{1} \backslash A$ is finite.

Lemma 3.10. Let L have SEKP. Then there exists clopen down set $C \in$ $\mathcal{O}(\mathbf{D}(L))$ such that $A_{1} \subseteq C$ and $C \cap A_{2}=\emptyset$. Moreover, for any such C and for $A \in \mathcal{O}(\mathbf{D}(L))$ such that $A \subseteq C$ the interval $[A, C]$ of $\mathcal{O}(\mathbf{D}(L))$ is (finite) Boolean and also for $A \in \mathcal{O}(\mathbf{D}(L))$ such that $C \subseteq A$ the interval $[C, A]$ of $\mathcal{O}(\mathbf{D}(L))$ is (finite) Boolean.

Proof. Take any $A \in \mathcal{O}(\mathbf{D}(L))$. By 3.9, the sets $A \cap A_{2}$ and $\left(A_{1} \backslash A\right)$ are finite, consisting of discrete points, and hence clopen. Therefore,

$$
C=A \cup\left(A_{1} \backslash A\right) \backslash\left(A \cap A_{2}\right)
$$

is a clopen down set, $A_{1} \subseteq C, A_{2} \cap C=\emptyset$.
Let $A \in \mathcal{O}(\mathbf{D}(L)), C \subseteq A$. By 3.9, $C=A \cup M$ for some finite $M \subseteq A_{2}$. Every set X with $C \subseteq X \subseteq A$ is a clopen down set, so interval $[C, A]$ is isomorphic to the power set of M.

Let $A \in \mathcal{O}(\mathbf{D}(L)), A \subseteq C$. By 3.9, $C=A \backslash M$ for some finite $M \subseteq A_{1}$. Every set X with $A \subseteq X \subseteq C$ is a clopen down set, so interval $[A, C]$ is isomorphic to the power set of M.

Now we can prove the following characterization theorem.
Theorem 3.11. Let L be an unbounded distributive lattice. Then the following are equivalent:
(1) L has SEKP.
(2) L is locally finite and there exists $c \in L$ such that for every $x<c$ or $x<c$ intervals $[x, c]($ if $x<c)$ and $[c, x]($ if $x>c)$ are (finite) Boolean.

Proof. If L has SEKP, it is locally finite by Lemmas 3.6(2) and 3.8. Second part of the condition (2) follows from Lemma 3.10.

Conversely let (2) be satisfied. We prove that $\mathcal{O}(\mathbf{D}(L))$ has SEKP. Let c be a special element of L from the condition (2). Denote $C=A_{c}=\{P \in$ $\operatorname{Spec}(L) ; c \notin P\}$. Clearly, $C \in \mathcal{O}(\mathbf{D}(L))$.

First we claim that $C \backslash\{\emptyset\}$ is an antichain. For contradiction, let $P_{1}, P_{2} \in C$ be such that $P_{1} \subsetneq P_{2}$. Let $a \in P_{1}, b \in P_{2} \backslash P_{1}$. Put $b^{\prime}=c \wedge b$ and $a^{\prime}=c \wedge b \wedge a$. We have that $b^{\prime} \in P_{2}$, but $b^{\prime} \notin P_{1}, a^{\prime} \in P_{1}$. Let $Q_{1}=P_{1} \cap\left[a^{\prime}, c\right], Q_{2}=$ $P_{2} \cap\left[a^{\prime}, c\right]$. As $b^{\prime} \in\left[a^{\prime}, c\right], Q_{1}, Q_{2}$ are prime ideals in a boolean algebra $\left[a^{\prime}, c\right]$ such that $Q_{1} \subsetneq Q_{2}$, because $b^{\prime} \in Q_{2} \backslash Q_{1}$, and this is impossible.

The set $B_{c}=\{P \in \operatorname{Spec}(L) ; c \in P\}$ is the complement of C. Similarly as above we can prove that $B_{c} \backslash\{L\}$ is an antichain.

The local finiteness of L implies that all points $P \in \mathcal{O}(\mathbf{D}(L)) \backslash\{\emptyset, L\}$ are discrete.

Now let θ be a congruence on $\mathcal{O}(\mathbf{D}(L))$. Hence, there exists a (closed) set $U \subseteq \operatorname{Spec}(L)$ such that

$$
(A, B) \in \theta \text { if and only if } A \cap U=B \cap U
$$

We define a function $f_{U}: \mathcal{O}(\mathbf{D}(L)) \rightarrow \mathcal{O}(\mathbf{D}(L))$ by

$$
f_{U}(A)=(A \cap U) \cup(C \backslash U)
$$

and we claim that (1) $f_{U}(A)$ is always a nonempty proper clopen down set, (2) f_{U} is a strong endomorphism, and (3) $\operatorname{ker}\left(f_{U}\right)=\theta$.

To prove (1), let us firstly show that $f_{U}(A)$ is clopen. It is easy to see that $A \cap C \subseteq f_{U}(A) \subseteq A \cup C$. Both $A \cup C$ and $A \cap C$ are clopen sets, so their difference $(A \cup C) \backslash(A \cap C)$ is clopen (and hence compact), consisting of discrete points. It follows that $(A \cup C) \backslash(A \cap C)$ is finite, and every set between $A \cap C$ and $A \cup C$ is clopen. So, $f_{U}(A)$ is a clopen set.

Now we show that $f_{U}(A)$ is a down set. Let $Q \in f_{U}(A), P \in \operatorname{Spec}(L)$ and $P \subsetneq Q$. If $P=\emptyset$, then clearly $P \in f_{U}(A)$. Let $P \neq \emptyset$. Clearly, $Q \neq L$, so the only possibility is $P \in C, Q \in B_{c}$. Now $Q \in f_{U}(A)$ implies $Q \in A \cap U$. Then $P \in A$, as A is a down set. We distinguish two cases. If $P \in U$, then $P \in A \cap U \subseteq f_{U}(A)$. If $P \notin U$, then $P \in C \backslash U$. In both cases $P \in f_{U}(A)$. Clearly, $L \notin f_{U}(A)$, so $f_{U}(A) \in \mathcal{O}(\mathbf{D}(L))$.

To prove (2), let $Z \subseteq \operatorname{Spec}(L)$. We can see that

$$
f_{U}(A) \cap Z=[(A \cap Z) \cap U] \cup[(C \backslash U) \cap Z] .
$$

Let $(A, B) \in \theta_{Z}$, which means that $A \cap Z=B \cap Z$. Then

$$
\begin{aligned}
f_{U}(A) \cap Z & =[(A \cap Z) \cap U] \cup[(C \backslash U) \cap Z] \\
& =[(B \cap Z) \cap U] \cup[(C \backslash U) \cap Z] \\
& =f_{U}(B) \cap Z,
\end{aligned}
$$

which means that $\left(f_{U}(A), f_{U}(A)\right) \in \theta_{Z}$ and therefore f_{U} is a compatible function. It is clear, that f_{U} is an isotone function and by Theorem 3.2(1) every
compatible isotone function on $\mathcal{O}(\mathbf{D}(L))$ (on L) is a homomorphism (it can be also checked by a routine calculation). That means, that f_{U} is a strong endomorphism.

To prove (3), we shall use an evident equality $f_{U}(A) \cap U=A \cap U$. Now, let $f_{U}(A)=f_{U}(B)$. Then $f_{U}(A) \cap U=f_{U}(B) \cap U$, which means that $A \cap U=$ $B \cap U$, or that $(A, B) \in \theta$.

For the opposite inclusion, let $(A, B) \in \theta$, which means that $A \cap U=B \cap U$. Then also

$$
f_{U}(A)=(A \cap U) \cup(C \backslash U)=(B \cap U) \cup(C \backslash U)=f_{U}(B)
$$

and we see that $\operatorname{ker}\left(f_{U}\right)=\theta$.
If L is finite, it is locally finite, so that we can omit this fact from the condition (2) in Theorem 3.11.

Theorem 3.12. Let L be a finite distributive lattice. Then the following are equivalent:
(1) L has SEKP;
(2) L does not have C_{4} as a homomorphic image;
(3) the poset $P(L)$ of all proper prime ideals (and/or Ji(L) of all join irreducible elements) has length (height) at most 1;
(4) there exists $c \in L$ such that for every $x<c$ or $x<c$ intervals $[x, c]$ (if $x<c)$ and $[c, x]($ if $x>c)$ are Boolean;
Proof. (1) $\Rightarrow(2)$ is Lemma 3.3, $(2) \Leftrightarrow(3)$ holds by Lemma 3.4, (1) \Leftrightarrow (4) by Theorem 3.11.

So that it is enough to prove for example the implication $(3) \Rightarrow(4)$. But in the finite case it is enough to take the down set

$$
C=\{P \in P(L) ;(\exists Q \in P(L)(P \subsetneq Q))\}
$$

and the corresponding element $c \in L$ has all necessary properties, because every subset and every superset of C is a down set.

Finally, let us present one example. Let C_{3} be a 3 -element chain $0<a<1$. Let I be any set and let L be the sublattice of C_{3}^{I} consisting of all $\left(x_{i}\right)_{i \in I}$ with $\left\{i \in I: x_{i} \neq a\right\}$ finite. Then L has SEKP. Indeed, it is easy to see that L is locally finite, and $c=\left(c_{i}\right)_{i \in I}$ with $c_{i}=a$ for every i satisfies $3.11(2)$.

References

[1] Balbes, R., Dwinger, Ph.: Distributive lattices. Univ. Missouri Press, Columbia, Missouri, (1974)
[2] Blyth, T.S., Fang, J., Silva, H.J.: The endomorphism kernel property in finite distributive lattices and de Morgan algebras. Communications in Algebra 32 (6), 2225-2242 (2004)
[3] Blyth, T.S., Silva, H.J.: The strong endomorphism kernel property in Ockham algebras. Communications in Algebra 36 (5), 1682-1694 (2004)
[4] Blyth, T.S., Fang, J., Wang, L.-B.: The strong endomorphism kernel property in distributive double p-algebras. Sci. Math. Jpn. 76 (2), 227-234 (2013)
[5] Clark, D.M., Davey, B.A.: Natural Dualities for the Working Algebraist. Cambridge University Press, (1998)
[6] Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Second edition, Cambridge University Press, Cambridge (2002)
[7] Fang, G., Fang, J.: The strong endomorphism kernel property in distributive p-algebras. Southeast Asian Bull. of Math. 37, 491-497 (2013)
[8] Fang, J., Sun, Z.-J.: Semilattices with the strong endomorphism kernel property Algebra Universalis 70 (4), 393-401 (2013)
[9] Gaitan, B., Cortes, Y.J.: The endomorphism kernel property in finite Stone algebras. JP J. of Algebra, Number Theory and Appl. 14, 51-64 (2009)
[10] Grätzer, G.: Lattice theory: Foundation. Birkhäuser Verlag, Basel, (2011)
[11] Guričan, J.: The endomorphism kernel property for modular p-algebras and Stone lattices of order n. JP J. of Algebra, Number Theory and Appl. 25 (1), 69-90 (2012)
[12] Kaarli, K., Pixley, A.F.: Polynomial completeness in algebraic systems. Chapman\&Hall/CRC, (2001)
[13] Katriňák, T., Mederly, P.: Construction of modular p-algebras. Algebra Universalis 4, 301-315 (1974)
[14] McKenzie, R., McNulty, G.F., Taylor, W.: Algebras, Lattices and Varieties. Vol. 1, Wadsworth and Brooks, Monterey, CA, (1987)
[15] Ploščica, M.: Affine completions of distributive lattices. Order 13 (3), 295-311 (1996)

Jaroslav Guričan
Faculty of Mathematics, Physics and Informatics, Comenius University Bratislava, Mlynská dolina, 84248 Bratislava, Slovakia
e-mail: gurican@fmph.uniba.sk
Miroslav PloščICA
Faculty of Natural Sciences, Šafárik's University, Jesenná 5, 04154 Košice, Slovakia e-mail: miroslav.ploscica@upjs.sk

[^0]: 2010 Mathematics Subject Classification: Primary: 06D15 Secondary: 08A30, 08A35, 06D99.

 Key words and phrases: p-algebra, Stone algebra, unbounded lattice, strong endomorphism kernel property, congruence relation, Priestley space, Priestley duality.

 While working on this paper, the first author was supported by VEGA grant No. $1 / 0608 / 13$ of Slovak Republic, the second author was supported by VEGA grant No. 1/0063/14 of Slovak Republic.

