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ABSTRACT. We say that a variety V of algebras has the Compact Intersection

Property (CIP), if the family of compact congruences of every A ∈ V is closed

under intersection. We investigate the congruence lattices of algebras in locally

finite congruence-distributive CIP varieties. We prove some general results and

obtain a complete characterization for some types of such varieties. We provide

two kinds of description of congruence lattices: via direct limits and via Priestley

duality.
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1. Introduction

Let K be a class of algebras and denote by ConK the class of all lattices
isomorphic to ConA (the congruence lattice of an algebra A) for some A ∈ K.
There are many papers investigating ConK for various classes K. However, the
full description of ConK has proved to be a very difficult (and probably in-
tractable) problem, even for the most common classes of algebras, like groups
or lattices. One of the sources of this difficulty is the fact that compact con-
gruences of an infinite algebra form a join-semilattice, which is not necessarily a
lattice. When trying to describe such semilattices one has to deal with various
refinement properties. (See, for instance, [16], [15], or [17].)
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It is therefore not surprising that in most cases when ConK is well understood,
the algebras in K have a special property: the intersection of any two compact
congruences of A ∈ K is compact. This is called the Compact Intersection Prop-
erty (CIP). Varieties with CIP has been considered before (for instance, [4], [5],
[3]), but with the main focus not on a characterization of ConK. (Although the
final example in [3] describes ConK for the variety generated by the 2-element
algebra {0, 1} with the operation p(x, y, z) = x ∨ (y ∧ z).)

In the present paper we initiate a systematic investigation of the class ConK,
where K is a locally finite congruence-distributive variety with CIP. Even un-
der such restrictions, the problem of describing ConK is still difficult. In our
previous paper [10] we were able to solve several simple cases. In the present
paper we try to obtain general results. First we describe the lattices in ConK
as directed limits of suitable limit system. We do not consider this characteri-
zation quite satisfactory, so we try to obtain another characterization using the
Priestley duality. Our results correspond to the two main approaches to the
problem of describing ConK. The approach based on lifting of diagrams has
been recently greatly developed by P. Gillibert. (See [6] or [7].) The description
based on topological representation has been investigated by M. Ploščica ([12],
[13], [14]).

We illustrate our results by applying them to several special cases.

2. Basic facts and denotations

Let L be a lattice. An element a ∈ L is called strictly meet-irreducible iff
a =

∧
X implies that a ∈ X, for every subset X of L. Let M(L) denote the set

of all strictly meet-irreducible elements. The greatest element of L is not strictly
meet-irreducible. By adding it to M(L) we obtain the set denoted by M∗(L).

If f is a mapping, then dom(f) stand for its domain. By ker f we denote the
binary relation on dom(f) given by (x, y) ∈ ker f iff f(x) = f(y). By f�X we
mean the restriction of f to X.

Let A be an algebra. For every a, b ∈ A by Θ(a, b) we denote the congruence
generated by the pair (a, b). The congruence lattice of A will be denoted by
ConA. For α ∈ ConA, the α-class in A/α containing a will be denoted by [a]α.

The set ConcA of all compact (finitely generated) congruences of A is a
(0,∨)-subsemilattice of ConA. The lattice ConA is uniquely determined by the
semilattice ConcA (it is isomorphic to the ideal lattice of ConcA). It is often
easier to describe ConcA instead of ConA.

Let P be a partially ordered set. For every x ∈ P we set ↑x =
{
y ∈ P | y ≥ x

}
,

↓x =
{
y ∈ P | y ≤ x

}
. A subset U ⊆ P is called an up-set (a down-set) if ↑x ⊆ U

for every x ∈ U (↓x ⊆ U for every x ∈ U ).
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It is a well known fact that for every θ ∈ ConA the lattice ConA/θ is iso-
morphic to ↑θ. Hence, θ ∈ M(ConA) if and only if the quotient algebra A/θ is
subdirectly irreducible. Equivalently, θ ∈ M(ConA) if and only if θ = ker f for
some surjective homomorphism f : A→ S, with S subdirectly irreducible. This
is also true if one considers one-element algebras as subdirectly irreducible and
replace M(ConA) by M∗(ConA).

For algebras A and B, B ≤ A denotes that B is a subalgebra of A. If B ≤ A
and θ ∈ ConA, then θ�B = θ ∩ B2 is the restriction of θ to B. For every
homomorphism f : A→ B we define the mapping

Conc f : ConcA→ ConcB

by the rule that, for every α ∈ ConcA, Conc f(α) is the congruence gener-
ated by the set

{
(f(x), f(y)) | (x, y) ∈ α

}
. This mapping is a homomorphism of

(0,∨)-semilattices. Notice that finite (0,∨)-semilattices are, in fact, lattices.

Now let ϕ : K → L be a (0,∨)-homomorphism of finite (0,∨)-semilattices.
We define the map ϕ← : L→ K by

ϕ←(β) =
∨{

α | ϕ(α) ≤ β
}
.

If K = ConcA, L = ConcB and ϕ = Conc f , for some algebras A, B and a
homomorphism f : A → B, then ϕ←(β) =

{
(x, y) ∈ A | (f(x), f(y)) ∈ β

}
. If A

is a subalgebra of B and f : A→ B is the inclusion, then ϕ←(β) is the restriction
of β ∈ ConB to A.

The pair (ϕ, ϕ←) is sometimes referred to as residuated mappings. The fol-
lowing facts are rather well known. (For (1)–(4) see [1: Section 1.3], while (5)
follows from Birkhoff’s duality for finite distributive lattices.)

����� 2.1� Let ϕ : K → L be a (0,∨)-homomorphism of finite lattices.

(1) ϕ← preserves ∧ and the largest element.

(2) ϕ(α) =
∧{

β | α ≤ ϕ←(β)
}
.

(3) ϕ(α) ≤ β ⇐⇒ α ≤ ϕ←(β).

(4) If ψ : L → M is another (0,∨)-homomorphism of finite lattices, then
(ψϕ)← = ϕ←ψ←.

(5) If ϕ : K → L is a 0-preserving homomorphism of finite distributive lattices,
then ϕ←(c) ∈ M∗(K) for every c ∈ M∗(L).

Next we recall the algebraic constructions of direct and inverse limit. Let P

be an ordered set. Let K be a class of algebras. A P -indexed diagram �A in
K consists of a family (Ap, p ∈ P ) of algebras in K and a family (fp,q, p ≤ q)
of homomorphisms fp,q : Ap → Aq such that fp,p is the identity on Ap and
fp,r = fq,rfp,q for all p ≤ q ≤ r.
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If the index set P is directed (for every p, q ∈ P there exists r ∈ P with

p, q ≤ r), then we define the direct limit of �A as

lim→
�A := lim→ Ap :=

(⊔
p∈P

Ap

)
/ ∼,

where
⊔
p∈P

Ap is the disjoint union of the family (Ap, p ∈ P ) and the equivalence

relation ∼ is defined (for x ∈ Ap and y ∈ Aq) by

x ∼ y ⇐⇒ ∃r ∈ P : fp,r(x) = fq,r(y).

A special case of the direct limit is the directed union, when all the homo-
morphisms are set inclusions. Note that in the category theory this construction
corresponds to the (directed) colimit.

The inverse limit of �A is defined for any partially ordered set P as a subalgebra
of the direct product of

∏
p∈P

Ap, namely

lim←
�A := lim← Ap :=

{
a ∈ ∏

p∈P
Ap | aq = fp,q(ap) for every p, q ∈ P, p ≤ q

}
.

(The elements of
∏
p∈P

Ap are written in the form a = (ap)p∈P .) A special case

of this construction is the direct product, which arises when P is an antichain.

In the category theory language, this construction is the limit of �A.

It is well known that any variety V is closed under the formation of direct
and inverse limits.

The direct limit construction will be used to obtain the description of Conc A
for infinite A ∈ V from the description of ConcA for finite A. This is pos-
sible due to the following two facts. First, Conc is a functor preserving the

direct limits, which means that for every directed P -indexed diagram �A in V we

have the P -indexed diagram Conc �A = (ConcAp,Conc ϕp,q) in the category of
(0,∨)-semilattices and (0,∨)-homomorphisms, and

Conc lim→
�A � lim

→
Conc �A.

Second, let �A = (Ap, ϕp,q) and �B = (Bp, ψp,q) be directed P -indexed diagrams
and let hp : Ap → Bp be isomorphisms for every p ∈ P such that the following
diagram commutes for every p, q ∈ P , p ≤ q:

Ap
ϕp,q−−−−→ Aq

hp

⏐⏐ hq

⏐⏐
Bp

ψp,q−−−−→ Bq
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Then

lim→
�A � lim→

�B.

The inverse limits will be used to construct algebras with prescribed finite
(distributive) congruence lattice. For this we need special diagrams called ad-
missible valuations.

Let SI(V) denote the class of all subdirectly irreducible members of a variety
V. In this paper we find it convenient to include one-element algebras into SI(V).
������	�
� 2.2� Let V be a variety and let M be a partially ordered set, we
say that M -indexed diagram −→v = (v(α), fα,β) is a SI(V)-valuation on M , if
v : M → SI(V) such that fα,β : v(α) → v(β) is surjective for every α ≤ β and
the assignment β �→ ker fα,β is a bijection ↑α→ M∗(Con v(α)).

����� 2.3� Let V be a variety, let M be a partially ordered set and let−→v = (v(α), fα,β) be a SI(V)-valuation on M . For every α ∈ M the bijection
↑α→ M∗(Con v(α)) defined by β �→ ker fα,β, is an isomorphism of ordered sets.

P r o o f. Let β, γ ∈ ↑α such that β ≤ γ. Thus fα,γ = fβ,γfα,β and hence
ker fα,β ≤ ker fα,γ .

Conversely, if ker fα,β ≤ ker fα,γ , then there exists a surjective homomorphism

g : v(β) → v(γ)

such that gfα,β = fα,γ . Now, there is a δ ∈M , δ ≥ β such that ker fβ,δ = ker g.
Thus

ker fα,δ = ker fβ,δfα,β = ker gfα,β = ker fα,γ ,

so δ = γ, hence β ≤ γ. �

������	�
� 2.4� A P -indexed diagram �A = (Ap, ϕp,q) in V is called admissible
if the following two conditions are satisfied:

(1) for every p ∈ P and every u ∈ Ap there exists

a ∈ lim
←
Ap

such that ap = u;

(2) for every p, q ∈ P , p � q there exist

a, b ∈ lim
←
Ap

such that ap = bp and aq �= bq.

Notice that the admissibility is a purely set-theoretical property, depending
only on the sets Ap and maps ϕp,q, and not on the algebraic structure of Ap.

The next theorem follows from [11: Theorem 2.4].
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���
�� 2.5� Let V be a locally finite congruence distributive variety. Let L

be a finite distributive lattice and let M = M∗(L). Let �A = (v(α), fα,β) be an

admissible SI(V)-valuation on M . Then A := lim←
�A is an algebra whose congru-

ence lattice is isomorphic to L. The isomorphism h : M∗(L) → M∗(ConA) can
be defined by h(α) = kerπα, where πα is the projection A→ v(α).

By the Birkhoff duality for finite distributive lattices, the isomorphism
h : M∗(L) → M∗(ConA) induces an isomorphism

k : ConA→ L

by k(x) =
∧{

y ∈ M∗(L) | h(y) ≥ x
}
. For x ∈ M∗(ConA) we have k(x) =

h−1(x), so k(kerπα) = α.

In Chapter 4 we prove a generalization of Theorem 2.5 for infinite M. Let us
recall the Priestley duality for distributive lattices with 0 (but not necessarily
with 1). Let L be a distributive lattice with 0. Let P(L) denote the set of all
prime ideals of L (including L itself). For every x ∈ L we define

Ux =
{
I ∈ P(L) | x ∈ I

}
, Vx =

{
I ∈ P(L) | x /∈ I

}
.

We endow P(L) with the ordering ≤ by the set inclusion and the topology τ
generated by all sets of the form Ux and Vx. The resulting structure (P(L),≤, τ)
is called the dual Priestley space of L. The ordered topological space P(L)
determines L uniquely. In fact, L is isomorphic to the lattice of all proper
clopen down-sets of P(L). As a topological space, P(L) is compact, Hausdorff,
zero-dimensional. It has a largest element. The compatibility of the order and
the topology can be expressed by the following condition of compact totally
order-disconnectedness:

(CTOD) If y, z ∈ P(L), y �≤ z, then there exists a clopen up-set U ⊆ P(L) with
y ∈ U , z /∈ U .

Moreover if F , G are closed sets such that ↑F ∩ ↓G = ∅, then there exists a
clopen up-set U such that F ⊆ U and U ∩G = ∅.

Further denote by Id(L) an ideal lattice of a lattice L. Prime ideals of L
can be also characterized as finitely meet irreducible elements of IdL. The next
lemma is easy to prove.

����� 2.6� Let L be a distributive lattice and let I ∈ IdL. Then I is prime if
and only if I is finitely meet irreducible element of IdL or I = L.

Now let V be a finitely generated congruence distributive variety. We prove
that, for every A ∈ V, all finitely meet-irreducible elements of ConA are strictly
meet-irreducible. We use the following concept from [12].
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������	�
� 2.7� A subset P of an algebraic lattice L is called separable, if
P ⊆ M(L) and there exists a family

{
xp | p ∈ P

} ⊆ L such that

(1) xp � p for every p ∈ P .

(2)
∧{

xp | p ∈ P
}
= 0.

Let s(V) = max
{|M(ConB)| | B ≤ A ∈ SI(V)}. Since V is finitely generated,

every subdirectly irreducible algebra is finite and hence s(V) ∈ N.

����� 2.8� ([12: Consequence 2.4]) If Q ⊆ M(ConA) is non-separable, for
some A ∈ V, then |Q| ≤ s(V).
����� 2.9� Let α be a finitely meet-irreducible element of ConA for some
A ∈ V. Then α ∈ M(ConA).

P r o o f. Let α be a finitely meet-irreducible element of ConA for some A ∈ V.
For contradiction suppose that there exists infinite R ⊆ M(ConA) such that

α =
∧
R, α /∈ R.

Choose finite P ⊆ R with |P | > s(V). By Lemma 2.8, P is separable, so we
have xp � p (hence xp � α) for every p ∈ P and

∧{
xp | p ∈ P

}
= 0 ≤ α, which

contradicts the finite meet-irreducibility of α. �

����� 2.10� For any algebra A ∈ V,
I ∈ P(ConcA) ⇐⇒ sup I ∈ M∗(ConA).

P r o o f. The equivalence follows from Lemma 2.6 and Lemma 2.9. �

Now recall the Compact Intersection Property of variety V. We say that V
has the Compact Intersection Property (CIP), if for every A ∈ V the intersection
of any two compact congruences of A is a compact congruence.

���
�� 2.11� ([10: Theorem 3.1]) Let V be a locally finite congruence dis-
tributive variety. The following conditions are equivalent.

(1) V has CIP.

(2) Every finite subalgebra of a subdirectly irreducible algebra of V is subdirectly
irreducible.

(3) For every embedding f : A→ B of algebras in V with A finite, the mapping
Conc f preserves meets.
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3. Description via direct limits

In this and the next section we assume that V is a finitely generated congru-
ence distributive variety with CIP.

���
�� 3.1� Let L be a distributive lattice with 0. The following conditions
are equivalent:

(1) L � ConcA for some A ∈ V.
(2) L is isomorphic to the direct limit of a P -indexed diagram �L = (Lp, ϕp,q |

p ≤ q in P ), where each Lp is a finite distributive lattice and each ϕp,q is
a 0-preserving lattice homomorphism such that
(a) For every p ∈ P , the ordered set M∗(Lp) has an admissible SI(V)-valu-

ation (vp(α), f
p
α,β).

(b) For every p, q ∈ P , p ≤ q and for every α ∈ M∗(Lq) there exists
embedding

eαp,q : vp(ϕ
←
p,q(α)) → vq(α)

such that

eβp,qf
p
α′,β′ = fqα,βe

α
p,q,

for every α ≤ β in M∗(Lq) and α′ := ϕ←p,q(α), β
′ := ϕ←p,q(β).

P r o o f.

(1) =⇒ (2): Let L � ConcA for some A ∈ V. Let P be the family of all finite
subsets of A ordered by set inclusion. Let Ap be the subalgebra of A generated
by p ∈ P . Since V is finitely generated, every Ap is finite. For every p, q ∈ P ,
p ≤ q, we put Lp = ConcAp and ϕp,q = Conc ep,q, where ep,q is the inclusion
Ap → Aq. By Theorem 2.11, every ϕp,q is 0-homomorphism of finite lattices.
Then A � lim

→
Ap, so L � ConcA � lim

→
ConcAp = lim

→
Lp.

Moreover M∗(Lp) = M∗(ConcAp), hence we can define a map

vp : M
∗(Lp) → SI(V)

by vp(α) = Ap/α for every α ∈ M∗(Lp). Further, for every α, β ∈ M∗(Lp),
α ≤ β we define a homomorphism

fpα,β : Ap/α→ Ap/β

as the natural projection (fpα,β([x]α) = [x]β). It is easy to see that (vp, f
p
α,β) is

a SI(V)-valuation on M∗(Lp). By [11: Lemma 2.2], it is admissible.

Now, let p, q ∈ P , p ≤ q and let α ∈ M∗(Lq) = M∗(ConcAq). Since Ap
is a subalgebra of Aq, we know (see the remark before Lemma 2.1) that α′ =
ϕ←p,q(α) = α�Ap. We define an embedding

eαp,q : Ap/α
′ → Aq/α
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naturally as eαp,q([x]α′) = [x]α. It is easy to see that the following diagram
commutes:

Ap/α
′ eαp,q−−−−→ Aq/α

fp

α′,β′

⏐⏐ fq
α,β

⏐⏐
Ap/β

′ eβp,q−−−−→ Aq/β

(2) =⇒ (1): For every p ∈ P we have a M∗(Lp)-indexed diagram �Dp :=

(vp(α), f
p
α,β). By Theorem 2.5, lim←

�Dp = Ap ∈ V such that M∗(ConcAp)

� M∗(Lp).
Let p, q ∈ P , p ≤ q and let M∗(Lp) =

{
β1, . . . , βr

}
, M∗(Lq) =

{
γ1, . . . , γs

}
.

We consider elements of Ap ≤
∏

α∈M∗(Lp)

vp(α) in the form a = (a1, . . . , ar) with

aj ∈ vp(βj) and similarly for Aq. Further we write fqi,k and fpj,l instead of fqγi,γk
and fpβj ,βl

.

By Lemma 2.1(5) we can define a map gp,q : Ap → Aq such that

gp,q((a1, . . . , ar)) = (d1, . . . , ds),

where di = eγip,q(aj) such that βj = ϕ←p,q(γi). We have aj ∈ vp(βj) and di ∈
vq(γi). We need to show that (d1, . . . , ds) ∈ Aq.

Let γi ≤ γk, then βj = ϕ←p,q(γi) ≤ ϕ←p,q(γk) = βl. Since Ap is an inverse limit,

we have al = fpj,l(aj). Thus, by the assumption (2)(b) we have

fqi,k(di) = fqi,k(e
γi
p,q(aj)) = eγkp,q(f

p
j,l(aj)) = eγkp,q(al) = dk.

So (d1, . . . , ds) ∈ Aq, hence gp,q is well defined and it is a routine to show that

gp,q is a homomorphism. Hence �A = (Ap, gp,q) is a directed P -indexed diagram
in V. Denote A the direct limit of this diagram.

Denote by δk the kth projection Ap → vP (βk) (k = 1, . . . , r) and by εl the lth
projection Aq → vq(γl) (l = 1, . . . , s). By Theorem 2.5 we have ConcAp � Lp,
where the isomorphism hp : ConcAp → Lp can be defined by hp(ker(δk)) = βk.
Similarly, let hq be the isomorphism ConcAq → Lq defined by hq(ker(εl)) = γl.

Now we claim that the following diagram commutes.

ConcAp
Conc gp,q−−−−−−→ ConcAq

hp

⏐⏐ hq

⏐⏐
Lp

ϕp,q−−−−→ Lq
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Since hp, hq are isomorphisms, we have h←p = h−1p , h←q = h−1p . By Lemma 2.1,
we can prove equivalently that h←p ϕ

←
p,q = (Conc gp,q)

←h←q . All maps in diagram
preserve ∧, it suffices to show that h←p ϕ

←
p,q(γi) = (Conc gp,q)

←h←q (γi) for every
γi ∈ M∗(Lq).

Let ϕ←p,q(γi) = βj . Then h←p ϕ
←
p,q(γi) = ker(δj). Further, h←q (γi) = ker(εi)

and

(x, y) ∈ (Conc gp,q)
←(ker(εi)) ⇐⇒ (gp,q(x), gp,q(y)) ∈ ker(εi)

⇐⇒ gp,q(x)i = gp,q(y)i ⇐⇒ eγip,q(xj) = eγip,q(yj)

⇐⇒ xj = yj ⇐⇒ (x, y) ∈ ker(δj),

so
(Conc gp,q)

←h←q (γi) = ker(δj) = h←p ϕ
←
p,q(γi).

This proves that our diagram commutes. Using this commutativity and the
fact that the functor Conc preserves direct limits, we have

ConcA = Conc lim→
�A � lim→ Conc �A � lim→

�L � L. �

In concrete cases, the general description of the direct limit system in (2) can
be specified more closely, which sometimes leads to a nice description of the class
ConV. (See such examples in our previous paper [10].) However, in many cases
the description provided by Theorem 3.1 is not quite satisfactory. That’s why
in the next section we try another approach.

4. Description via Priestley duality

Let V be a finitely generated congruence distributive variety with CIP. Hence
ConcA is a distributive lattice with 0 for every A ∈ V. So it is natural to
describe these lattices by means of Priestley duality.

Let L be a distributive lattice with 0 and let (P(L),≤, τ) be its dual Priestley
space. Consider the following conditions on (P(L),≤, τ):
(Pr1) P(L) has an admissible SI(V)-valuation (

v(I), fI,J
)
;

(Pr2) For every I ∈ P(L) there exists an open set U such that I ∈ U and for
every J ∈ U the algebra v(I) is isomorphic to a subalgebra of v(J).

���
�� 4.1� If L � ConcA for some A ∈ V, then the dual Priestley space
(P(L),≤, τ) satisfies (Pr1) and (Pr2).

P r o o f. Let L = ConcA for some A ∈ V. By Lemma 2.10 we have sup I ∈
M∗(ConA) for every I ∈ P(L). So we can define a map v : P(L) → SI(V) such
that

v(I) = A/ sup I.
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Since for every I, J ∈ P(L), I ≤ J , we have sup I ≤ sup J , we can define a
surjective homomorphism

fI,J : A/ sup I → A/ sup J

as natural projection fI,J([x]sup I) = [x]supJ . It is easy to see that (v(I), fI,J) is
an SI(V)-valuation on P(L). The admissibility follows from [11: Lemma 2.2].

To prove (Pr2), let I ∈ P(L). Since the quotient algebra A/ sup I is finite,
there are n ∈ N and x1, . . . , xn ∈ A such that for every y ∈ A there exists
i ∈ {

1, . . . , n
}
with xi ∈ [y]sup I .

Let B be the subalgebra of A generated by x1, . . . , xn. Hence, B is finite and
B/ sup I�B is isomorphic to A/ sup I. Denote by U the intersection⋂

x,y∈B
Θ(x,y)∈I

{
J ∈ P(L) | Θ(x, y) ∈ J

} ∩
⋂

x,y∈B
Θ(x,y)/∈I

{
J ∈ P(L) | Θ(x, y) /∈ J

}
.

Since U is an intersection of finitely many clopen sets, it is a clopen set. More-
over, it is easy to see that I ∈ U . For every J ∈ U we have sup I�B = sup J�B.
Indeed, the compactness of Θ(x, y) implies that Θ(x, y) ≤ sup I iff Θ(x, y) ∈ I,
hence

sup I�B =
{
(x, y) ∈ B2 | (x, y) ∈ sup I

}
=

{
(x, y) ∈ B2 | Θ(x, y) ≤ sup I

}
=

{
(x, y) ∈ B2 | Θ(x, y) ∈ I

}
=

{
(x, y) ∈ B2 | Θ(x, y) ∈ J

}
= sup J�B.

So, v(J) = A/ sup J ≥ B/ sup J�B = B/ sup I�B � A/ sup I = v(I). �

Unfortunately, the converse to Theorem 4.1 does not hold in general. (See
[9].) We are only able to prove the sufficiency of conditions (Pr1) and (Pr2) in
some special cases. We will present two such special cases. First we prove a
generalization of Theorem 2.5.

���
�� 4.2� Let L be a distributive lattice with 0 and let (P(L), τ,≤) be its
dual Priestley space. Let (v(I), fI,J) be a SI(V)-valuation on P(L). Let A be a
subalgebra of

∏
I∈P(L)

v(I) such that

(a) for every a ∈ A and for every I, J ∈ P(L), I ≤ J,

aJ = fI,J(aI);

(b) for every I ∈ P(L) and for every u ∈ v(I) there exists a ∈ A such that

aI = u;

(c) for every I, J ∈ P(L), I � J there exist a, b ∈ A such that

aI = bI , aJ �= bJ ;
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(d) for every a, b ∈ A the set Ua,b =
{
I | aI = bI

}
is clopen.

Then the Priestley spaces P(L) and P(ConcA) are isomorphic (and hence L
and ConcA are isomorphic) and the isomorphism ϕ : P(L) → P(ConcA) can
be defined by ϕ(I) =

{
α ∈ ConcA | α ≤ ker pI

}
, where pI : A → v(I) is the

projection.

P r o o f. Let I ∈ P(L), by (b), pI is surjective, hence ker pI ∈ M∗(ConA), so
by Lemma 2.10 we have

{
α ∈ ConcA | α ≤ ker pI

} ∈ P(ConcA). Thus the map
ϕ : P(L) → P(ConcA) is well-defined.

We prove that ϕ is an isomorphism of ordered topological spaces. If K ∈
P(ConcA), then K =

{
α ∈ ConcA | α ≤ γ

}
for some γ ∈ M∗(ConA).

We claim that ker pI ≤ γ for some I. For contradiction suppose that ker pI � γ
for every I ∈ P(L). Our assumption means that⋃

(a,b)∈A2\γ
Ua,b = P(L).

Since P(L) is compact, there exists n ∈ N and elements ai, bi ∈ A (i ∈ {
1, . . . , n

}
)

such that (ai, bi) /∈ γ and for every J ∈ P(L) there exists j ∈ {
1, . . . , n

}
with

ajJ = bjJ , hence Θ(aj, bj) ≤ ker pJ . Then⋂
1≤i≤n

Θ(ai, bi) ≤
∧

J∈P(L)

kerpJ = 0 ≤ γ.

This contradicts the ∧-irreducibility of γ (note that if (a, b) /∈γ, then Θ(a, b)�γ).
Hence, there exists I ∈ P(L) such that ker pI ≤ γ. Since pI : A → v(I) is
surjective, the lattice Con v(I) is isomorphic to the filter ↑ ker pI of ConA. The
congruence γ ∈ ↑ ker pI corresponds to the congruence γ′ ∈ Con v(I) given by
γ′ =

{
(xI , yI) | (x, y) ∈ γ

}
. By Definition 2.2, γ′ = ker fI,J for some J ≥ I, so

(x, y) ∈ γ ⇐⇒ (xI , yI) ∈ γ′ = ker fI,J

⇐⇒ fI,J(xI) = fI,J(yI) ⇐⇒ xJ = yJ

⇐⇒ (x, y) ∈ ker pJ ,

hence γ = ker pJ . Thus for every K ∈ P(ConcA) there exists J ∈ P(L) such
that ϕ(J) = K, so ϕ is surjective. Moreover, by (c), ϕ(I) ≤ ϕ(J) if and only if
I ≤ J . Hence ϕ is bijective and both ϕ and ϕ−1 preserve the order.

It remains to show that ϕ is a topological homeomorphism. We check that
ϕ−1(U ) is open set for every U from the subbase of P(ConcA). Let α ∈ ConcA,

so α =
k⋃
i=1

Θ(ai, bi) for some ai, bi ∈ A, i ∈ {
1, . . . , k

}
. Let

U =
{
I ∈ P(ConcA) | α ∈ I

}
,
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then
I ∈ ϕ−1(U ) ⇐⇒ ϕ(I) ∈ U ⇐⇒ α ∈ ϕ(I) ⇐⇒ α ≤ ker pI ,

so
ϕ−1(U ) =

{
I | α ≤ ker pI

}
=

⋂
1≤i≤k

{
I | Θ(ai, bi) ≤ ker pI

}

=
⋂

1≤i≤k

{
I | aiI = biI

}
.

Hence ϕ−1(U ) =
⋂

1≤i≤k
Uai,bi is clopen. Now let V =

{
I ∈ P(ConcA) | α /∈ I

}
,

hence ϕ−1(V ) is a complement of ϕ−1(U ), so it is also clopen.

We have proved that ϕ is continuous. Since both spaces are compact Haus-
dorff, and ϕ is bijective, it must be a homeomorphism. Hence, P(L)�P(ConcA),
so L � ConcA. �

Note that if L is finite, then the topology is discrete. Hence Theorem 2.5 is a
special case of Theorem 4.2.

5. Special cases

Let V be a finitely generated congruence distributive variety with CIP. More-
over, assume that ConS is a chain for every S ∈ SI(V). We denote

Si :=
{
A ∈ SI(V) | ConA is an i-element chain

}
.

Further, denote by Pn the class of all partially ordered sets (C,≤) with
a largest element such that for every x ∈ C, ↑x is a k-element chain, k ∈{
1, . . . , n

}
. Hence, C ∈ Pn is a disjoint union of antichains C0, . . . , Cn−1 such

that |↑x| = k+1 for x ∈ Ck. Let L be a lattice such that P(L) ∈ Pn, then denote
Pk = Pk(L) = (P(L))k for k = 0, . . . , n− 1. Notice that P0 is a one-element set.

We present a detailed analysis of two special cases.

The first case

We suppose that V satisfies the following additional assumptions:

(A1) max
{
j | Sj �= ∅} = n > 1.

(A2) If A ≤ B ∈ SI(V), then ConA � ConB.

����� 5.1� Let L be a distributive lattice with 0 such that its dual Priestley
space (P(L),≤, τ) satisfies (Pr1) and (Pr2). Then

(1) P(L) ∈ Pn,
(2) for every k ∈ {

0, . . . , n− 1
}
, the set Pk(L) is clopen.
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P r o o f. By Lemma 2.3, ↑I is isomorphic to Con v(I), which is a chain of length
at most n for every I ∈ P(L).

Further, by (Pr2), for every I ∈ Pk(L) there exists an open set U such that
I ∈ U and v(I) is isomorphic to a subalgebra of v(J) for every J ∈ U . By the
assumption (A2) we have Con v(I) � Con v(J), thus J ∈ Pk(L). This shows
that Pk(L) is open. Since the sets P0(L), . . . , Pn(L) are mutually disjoint, they
must also be closed. �

���
�� 5.2� Let V satisfy the assumptions stated above. Let L be a distribu-
tive lattice with 0 and let (P(L),≤, τ) be its dual Priestley space. The following
conditions are equivalent.

(1) L � ConcA for some A ∈ V;
(2) (P(L),≤, τ) satisfies (Pr1) and (Pr2);

(3) P(L) ∈ Pn and for every k = 0, 1, . . . , n− 1 the set Pk(L) is clopen.

P r o o f. We have already proved (1) =⇒ (2) =⇒ (3).

(3) =⇒ (1): By (A1) there exists F ∈ SI(V) such that ConF is an
n-element chain αn−1 < αn−2 < · · · < α0. For every i ∈ {

0, . . . , n− 1
}

de-
note Fi = F/αi, so ConFi is an (i+1)-element chain. For every j ≤ i we define
a map fi,j : Fi → Fj as the natural projection. For every I, J ∈ P(L), I ≤ J
denote v(I) = F|↑I|−1 and fI,J = f|↑I|−1,|↑J |−1. We define an algebra

A ≤
∏

I∈P(L)

FI

such that a ∈ A if

(i) aJ = fI,J(aI), whenever I ≤ J .

(ii) for every i ∈ {
0, . . . , n− 1

}
and every u ∈ Fi the set

{
I ∈ Pi(L) | aI = u

}
is open.

We can see that (v(I), fI,J) is a SI(V)-valuation on P(L). Moreover, since
Fi is finite, all the sets

{
I ∈ Pi | aI = u

}
are clopen. For a, b ∈ A, the set

Ua,b =
{
I | aI = bI

}
is a union of sets

{
I ∈ Pi | aI = u

} ∩ {
I ∈ Pi | bI = u

}
for

every u ∈ Fi, (i = 0, . . . , n − 1), hence Ua,b is clopen. It remains to check the
conditions (b) and (c) of Theorem 4.2.

To prove (b), let I ∈ Pj(L) and let k ∈ FI . Hence k = [v]αj
for some v ∈ F .

Let a = (aK)K∈P(L), where aK = [v]αi
for every K ∈ Pi(L). We claim that

a ∈ A. Condition (i) holds trivially. Let i ∈ {
0, . . . , n− 1

}
, for every u ∈ Fi we

have u = [w]αi
for some w ∈ F . Hence the set

{
I ∈ Pi | aI = [w]αi

}
=

{
I ∈ Pi | [v]αi

= [w]αi

}
=

{ ∅ if [v]αi
�= [w]αi

,
Pi if [v]αi

= [w]αi
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is in each case clopen. So a ∈ A and aI = k.

To prove (c), let I, J ∈ P(L) such that I � J . Denote j = |↑J | − 1. Since
j ≥ 1, there exist u, v ∈ v(J), u �= v such that (u, v) ∈ ker fj,j−1. Hence, there
exist t1, t2 ∈ F such that

u = [t1]αj
�= [t2]αj

= v

and

[t1]αs
�= [t2]αs

for every s < j.

For every K ∈ Pl(L) denote

aK = [t1]αl
.

We have already shown that every element of the form a = (aK)K∈P(L) belongs
to A. Further, by CTOD, there exists a clopen up-set V ⊆ P(L) such that
I ∈ V , J /∈ V . Denote

U := ↓(Pj(L) \ V ).

Both Pj \V and Pj ∩V are clopen, so ↓(Pj \V ) and ↓(Pj ∩V ) are disjoint closed
sets and their union is equal to the clopen set Pj ∪ Pj+1 ∪ · · · ∪ Pn−1. Hence U
is a clopen set. For every l ∈ {

0, . . . , n− 1
}
and every K ∈ Pl we denote

bK =

{
[t1]αl

if K /∈ U,
[t2]αl

if K ∈ U.

Now denote b = (bK)K∈P(L) and we prove that b ∈ A.

Let K,M ∈ P (L), K ≤ M . If K,M ∈ U or K,M /∈ U , then clearly
fK,M(bK) = bM . If K ∈ U and M /∈ U , then

r = |↑K| − 1 ≥ j,

s = |↑M | − 1 < j

and fK,M(bK) = fr,s([t2]αr
) = [t2]αs

= [t1]αs
= bM .

Further, let i ∈ {
0, . . . , n− 1

}
and w ∈ Fi. The set

{
I ∈ Pi | bI = w

}
=

⎧⎪⎪⎨
⎪⎪⎩

Pi if w = [t2]αi
= [t1]αi

,
Pi ∩ U if w = [t2]αi

�= [t1]αi
,

Pi \ U if w = [t1]αi
�= [t2]αi

,
∅ otherwise

is in each case clopen. Hence a, b ∈ A. Moreover aI = [t1]α|↑I|−1
= bI , aJ =

[t1]αj
�= [t2]αj

= bJ .

By Theorem 4.2 we have P(L) � P(ConcA), so L � ConcA. �
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Thus, in our special case we have proved the converse to Theorem 4.1. Thanks
to the result of Katriňák and Mitschke, we can go even further. Recall [8] or [2]
for the definition of a dual Stone lattice of order n.

���
�� 5.3� Let V satisfy the assumptions stated above. Let L be a distribu-
tive lattice with 0 and let (P(L),≤, τ) be its dual Priestley space. The following
conditions are equivalent.

(1) L � ConcA for some A ∈ V.
(2) P(L) ∈ Pn and the set Pk(L) is clopen for every k = 0, 1, . . . , n− 1.

(3) P(L) ∈ Pn and for every i ∈ {
0, . . . , n− 2

}
, there exists an element ei ∈⋂{

I | I∈P0(L) ∪ · · · ∪ Pi(L)
}
such that ei /∈J for every J ∈Pj(L) (j>i).

(4) L is a dual Stone lattice of order n.

P r o o f. We have already proved the equivalence (1) ⇐⇒ (2). The equivalence
(3) ⇐⇒ (4) was proved in [8: Theorem 4.5] (in a dual form).

(2) =⇒ (3): Let i, j ∈ {
0, . . . , n− 1

}
, i < j, let I ∈ P0 ∪ · · · ∪ Pi, J ∈ Pj .

Since I � J , there exists αI,J ∈ I \ J . Denote

UI,J =
{
K ∈ P(L) | αI,J /∈ K

}
,

UI =
{
UI,J | J ∈ Pj for some j > i

}
.

It is easy to see that I /∈ UI,J , J ∈ UI,J . Moreover since UI is an open cover
of the closed (and hence compact) set Qi =

⋃
j>i

Pj, there exist finitely many
J1, . . . , Jm ∈ P(L) such that

Qi ⊆
{
K | αI,J1

/∈ K or . . . or αI,Jm
/∈ K

}
=

{
K | αI,J1

∨ · · · ∨ αI,Jm
/∈ K

}
.

Denote βI = αI,J1
∨ · · · ∨ αI,Jm

. Hence for every I ∈ P0 ∪ · · · ∪ Pi there exists
βI ∈ L such that

(i) βI ∈ I,

(ii) βI /∈ J for every J ∈ Pj , j > i.

Further, denote UI =
{
K ∈ P(L) | βI ∈ K

}
. The collection of sets UI , I ∈

P0 ∪ · · · ∪ Pi covers the compact set P0 ∪ · · · ∪ Pi. By the compactness, there
exist I1, . . . , Iq ∈ P0 ∪ · · · ∪ Pi such that

P0 ∪ · · · ∪ Pi ⊆
{
K | βI1 ∈ K or . . . or βIq ∈ K

}
.

Using the fact that ideals K ∈ P(L) are prime we obtain

P0 ∪ · · · ∪ Pi ⊆
{
K | βI1 ∧ · · · ∧ βIq ∈ K

}
.

Denote ei = βI1 ∧ · · · ∧ βIq . Hence for every I ∈ P0 ∪ · · · ∪ Pi(L) and for every
J ∈ Pj(L) (j > i) we have ei ∈ I and ei /∈ J .
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(3) =⇒ (2): Let i ∈ {
0, . . . , n− 2

}
. By (3), Pi+1 ∪ · · · ∪ Pn−1 = Qi ={

I ∈ P(L) | ei /∈ I
}
, which is a clopen set. Then also Pi = Qi−1 \Qi is clopen,

i = 1, . . . , n− 2. Moreover, P0 is the complement of Q0 and Pn−1 = Qn−2. �

The second case

Similarly as in the first special case, we assume that V is finitely generated
congruence distributive variety and ConA is a chain for every A ∈ SI(V). Instead
of (A1), (A2) we consider the following additional assumptions:

(B1) max
{
j | Sj �= ∅} = 3;

(B2) For every G ≤ F ∈ SI(V) either ConG � ConF or G ∈ S2, F ∈ S3;

(B3) There exists F 0 ∈ S3 such that F 0/α ≤ F 0, where α is the only nontrivial
congruence on F 0;

����� 5.4� Let G ≤ F ∈ SI(V) such that ConG is a 2-element chain 0 < 1
and ConF is a 3-element chain 0 < α < 1. Let h be an embedding G→ F , then
Conh(1) = 1.

P r o o f. We have Conh(1) �= 0 because h is injective. For contradiction suppose
that Conh(1) = α. Hence h(G) is contained in one α-class, so F/α has an one-
element subalgebra. We have a contradiction with the assumption (B2). �

����� 5.5� F 0/α is isomorphic to a retract of F 0.

P r o o f. Let e : F 0/α → F 0 be an embedding and f : F 0 → F 0/α be a natural
projection. Then by 5.4

Con fe(1) = Con f Con e(1) = Con f(1) = 1,

so Con fe is an isomorphism
{
0, 1

} → {
0, 1

}
, thus fe is injective and since F 0 is

finite, fe is an automorphism. Hence G = e(F 0/α) is a retract of F 0 isomorphic
with F 0/α (with e(fe)−1f as the retraction). �

����� 5.6� Let L be a distributive lattice with 0 such that its dual Priestley
space (P(L),≤, τ) satisfies (Pr1) and (Pr2). Then

(1) P(L) ∈ P3,

(2) P0(L) is clopen, P2(L) is open.

P r o o f. By the definition of a SI(V)-valuation, ↑I is isomorphic to Con v(I)
which is a chain of length at most 3.

Further let i ∈ {
0, 2

}
and let I ∈ Pi(L). By (Pr2) there exists an open set

U with I ∈ U and for every J ∈ U we have v(I) ≤ v(J), thus J ∈ Pi(L) by
assumption (B2), hence Pi(L) is open. Since P0(L) is a one-element set, it is
also closed. �
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���
�� 5.7� Let V satisfy the assumptions stated above. Let L be a distribu-
tive lattice with 0 and let (P(L),≤, τ) be its dual Priestley space. The following
conditions are equivalent.

(1) L � ConcA for some A ∈ V;
(2) (P(L),≤, τ) satisfies (Pr1) and (Pr2);

(3) P(L) ∈ P3, P0(L) is clopen and P2(L) is open.

P r o o f. We have already proved (1) =⇒ (2) =⇒ (3).

(3) =⇒ (1): Denote F = F 0, let G be a retract of F such that G � F/α.
For every I ∈ P(L) denote

v(I) := F if I ∈ P2,

v(I) := G if I ∈ P1,

v(I) := 1 if I ∈ P0.

(By 1 we denote both the one-element algebra in V and its single element.)
By Lemma 5.5 there exists a surjective homomorphism f : F → G such that
f�G = idG. For every I, J ∈ P (L), I < J we define a map fI,J = v(I) → v(J)
such that

fI,J(a) = f(a), if I ∈ P2, J ∈ P1;

fI,J(a) = 1, if J ∈ P0;

(and, of course, fI,I is the identity for every I ∈ P (L).) We define an algebra

A ≤
∏

I∈P(L)

v(I)

such that a ∈ A if

(i) aJ = fI,J(aI), whenever I ≤ J ;

(ii) for every u ∈ F the set
{
I ∈ P(L) | aI = u

}
is clopen.

(Note that the set
{
I ∈ P(L) | aI = u

}
may contain elements from both P1 and

P2.) It is easy to see that (v(I), fI,J) is a SI(V)-valuation on P(L). Let a, b ∈ A.
Since Ua,b =

{
I | aI = bI

}
is a union of sets

{
I | aI = u

}∩{
I | bI = u

}
for every

possible u, we have that Ua,b is clopen. It remains to check the conditions (b)
and (c) of Theorem 4.2.

First let U ⊆ P2(L) and V ⊆ P (L) be clopen sets. Let v ∈ F , v1, v2 ∈ G,
v1 �= v2. For every K ∈ P(L) denote

a(U, v)K =

⎧⎨
⎩

1 if K ∈ P0,
v if K ∈ U,
f(v) if K ∈ P1 ∪ (P2 \ U ),
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b(V, v1, v2)K =

⎧⎨
⎩

1 if K ∈ P0,
v1 if K ∈ ↓(P1 \ V ),
v2 if K ∈ ↓(P1 ∩ V ).

Since P1 is closed, we have P1∩V and P1\V closed, hence both ↓(P1∩V ) and
↓(P1 \ V ) are closed. These sets are disjoint and their union P1 ∪ P2 is clopen.
Hence both ↓(P1 ∩ V ) and ↓(P1\V ) are clopen sets.

Denote a = (a(U, v)K)K∈P(L), we prove that a ∈ A. Let I ∈ P2, J ∈ P1,
I < J . Then

fI,J(aI) = f(v) = aJ .

Further, for every u ∈ F the set

{
I ∈ P(L) | aI = u

}
=

⎧⎪⎪⎨
⎪⎪⎩

U if u = v �= f(v),
P1 ∪ (P2 \ U ) if u = f(v) �= v,
P1 if u = v = f(v),
∅ otherwise

is in each case clopen. Thus, a ∈ A.

Now denote b = (b(V, v1, v2)K)K∈P(L), we prove that b ∈ A. Let I ∈ P2,
J ∈ P1, I < J . Then

fI,J(bI) =

{
f(v1) = v1 = bJ if I ∈ ↓(P1 \ V ) ∩ P2,
f(v2) = v2 = bJ if I ∈ ↓(P1 ∩ V ) ∩ P2.

For every u ∈ F the set

{
I ∈ P(L) | aI = u

}
=

⎧⎨
⎩

↓(P1 ∩ V ) if u = v2 = f(v2),
↓(P1 \ V ) if u = v1 = f(v1),
∅ otherwise

is in each case clopen, so b ∈ A.

Now we can deal with the conditions (b) and (c) of Theorem 4.2. Let J ∈ P2

and let v ∈ v(J) = F . By CTOD there exists a clopen down-set U such that
J ∈ U and (P1 ∪ P0) ∩ U = ∅. Denote a = (a(U, v)K)K∈P(L). We have a ∈ A
and aJ = v.

Now let J ∈ P1 and let v ∈ v(J) = G, hence f(v) = v. Denote a =
(a(∅, v)K)K∈P(L), we have a ∈ A and aJ = f(v).

Further let I, J ∈ P(L) such that I � J .

First let J ∈ P2, then there exist v1, v2 ∈ v(J) = F , v1 �= v2 such that f(v1) =
f(v2). By CTOD there exists a clopen down-set U ⊆ P2 such that J ∈ U and
(P1 ∪P0 ∪

{
I
}
)∩U = ∅. Denote a = (a(U, v1)K)K∈P(L), b = (a(U, v2)K)K∈P(L).

We have a, b ∈ A and aI = f(v1) = f(v2) = bI , aJ = v1 �= v2 = bJ .
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Now let J ∈ P1 and let v1, v2 ∈ v(J) = G such that v1 �= v2. By CTOD
there exists a clopen up-set V ⊆ P(L) such that I ∈ V and J /∈ V . Denote
a = (a(∅, v2)K)K∈P(L), b = (b(V, v1, v2)K)K∈P(L). We have a, b ∈ A. Moreover
aI = f(v2) = v2 = bI , aJ = v2 �= v1 = bJ .

By Theorem 4.2, P(L) � P(ConcA), so L � ConcA. �

Similarly as in the first case we can go even further. Recall some basic
facts about dual Stone lattices. A bounded lattice L is called dually pseu-
docomplemented if for every x ∈ L there exists its dual pseudocomplement
x+ = min{y ∈ L | x∨y = 1}. The elements satisfying x+ = 1 are called co-dense
and form an ideal of L denoted by D̄(L). A dual Stone lattice is a distributive
dually pseudocomplemented lattice satisfying the identity x+ ∧ x++ = 0.

The next lemma follows from results of Katriňák and Mitschke (see [8]).

����� 5.8� Let L be a dual Stone lattice. Denote max(P(L)) the set of all
maximal elements of P(L)\{L}. Then

(1) I ∈ max(P(L)) if and only if D̄(L) ∈ I;

(2) for every I ∈ P(L) there exists exactly one J ∈ max(P(L)) such that I ⊆ J.

���
�� 5.9� The following conditions are equivalent:

(1) L � ConcA for some A ∈ V.
(2) P(L) ∈ P3 and P0(L) is clopen, P2(L) is open.

(3) L is a dual Stone lattice and its co-dense elements form a generalized
Boolean lattice.

P r o o f. We have already proved the equivalence (1) ⇐⇒ (2).

(2) =⇒ (3): We know that L is isomorphic to the lattice of all proper clopen
down-sets of P(L), hence ∅ is the least and P1 ∪ P2 is the greatest element of
L. Further, let U be proper clopen down-set of P(L). It is easy to see that
its dual pseudocomplement is U+ = ↓(P1 \ U ). Then U++ = ↓(P1 ∩ U ), so
U+ ∩ U++ = ∅. Hence, L is a dual Stone lattice.

Clearly, U+ = 1 if and only if U ⊆ P2 and thus

D̄(L) =
{
U | U ⊆ P2, U clopen

}
.

Obviously, clopen subsets of P2 form a generalized Boolean lattice. This gen-
eralized Boolean lattice is not necessarily a Boolean lattice, since P2 itself need
not be clopen.

(3) =⇒ (2): It is easy to see that P0 =
{
I | 1 ∈ I

}
=

{
L
}
is clopen. Since

P1 = max(P(L)), by Lemma 5.8(1) for every I /∈ P1 ∪ P0 there exists x ∈ D̄(L)
such that x /∈ I. Hence I ∈ Vx =

{
J ∈ P(L) | x /∈ J

}
and since Vx is open and

P1 ∩ Vx = ∅, we have P1 closed.
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Further we prove that P(L) \ (P1 ∪ P0) is an antichain. For contradiction
suppose that there exist I, J ∈ P(L) \ (P1 ∪ P0) such that I < J . By CTOD
there exists a clopen down-set V such that J ∈ V and V ∩ (P1 ∪ P0) = ∅.
Also by CTOD, there exists a clopen down-set U ⊆ V such that I ∈ U and
J /∈ U . Identifying L with the lattice of all clopen down-sets of P(L), we have
V, U ∈ D̄(L). However, U has no complement in the interval [∅, V ]. Indeed, let
W ⊆ V be a clopen down-set. Now

• if J ∈ W , then I ∈ W , so U ∩W �= ∅;
• if J /∈ W , then J /∈ U ∪W , so U ∪W �= V .

It is a contradiction with the fact that D̄(L) is a generalized Boolean lattice.

Thus, P2 = P(L) \ (P1 ∪ P0) is an antichain. By Lemma 5.8(2), for every
I ∈ P2 the set ↑I is a 3-element chain. So, P(L) ∈ P3. �
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versity, Košice, 2013.
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[12] PLOŠČICA, M.: Separation in distributive congruence lattices, Algebra Universalis 49

(2003), 1–12.
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