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Šafárik’s University, Jesenná 5
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We consider the problem, whether the algebras in two finitely generated congruence-
distributive varieties have isomorphic congruence lattices. According to the results of P.
Gillibert, this problem is closely connected with the question, which diagrams of finite
distributive semilattices can be represented by the congruence lattices of algebras in
a given variety. We study this question for varieties of bounded lattices, generated by
different nondistributive lattices of length 2 (denoted Mn). For each pair from this family
of varieties we construct a diagram indexed by the product of three finite chains, which
is liftable in one variety and nonliftable in the other one. We also discover an interesting
link to the four-color theorem of graph theory.
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1. Introduction

For a class K of algebras we denote ConK the class of all lattices isomorphic to
Con (A) (the congruence lattice of an algebra A) for some A ∈ K. There are many
papers investigating ConK for various classes K. However, the full description of
ConK has proved to be a very difficult (and probably intractable) problem, even
for the most common classes of algebras, like groups or lattices. The latest evi-
dence of this is the recent solution of the Congruence Lattice Problem (CLP) by
F. Wehrung [11].
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The difficulty in describing ConK leads to consideration of the following
problem.

Problem 1.1. Given classes K and L of algebras, decide whether ConK ⊆ ConL.

In the present paper we consider this problem under the additional conditions
that both K and L are finitely generated, congruence-distributive varieties (equa-
tional classes) of algebras. We feel that in this very special case there is a hope for
an algorithmic solution of Problem 1.1 and our paper is a step towards this goal.

We use the technique of lifting commutative diagrams of semilattices by the
Con c functor. This approach has been used in several papers investigating the
congruence lattices of algebras, for instance [7, 9, 10]. The systematic research of
this topic in connection with Problem 1.1 has been carried out by P. Gillibert in
[1], which is our main source of motivation.

We assume familiarity with fundamentals of lattice theory and universal algebra.
For all undefined concepts and unreferenced facts we refer to [3] and [4].

The congruence lattice Con (A) of an algebra A is always algebraic and its
compact elements form a (∨, 0)-subsemilattice of Con (A), denoted Con c(A). For
x, y ∈ A let θ(x, y) denote the smallest congruence containing the pair (x, y). (We
also write θA(x, y), when A needs to be specified.) The semilattice Con c(A) con-
sists precisely of all finitely generated congruences, i.e. congruences of the form
θ(x1, y1) ∨ . . . ∨ θ(xn, yn). The smallest congruence (the equality relation) is com-
pact, so Con c(A) has always a smallest element.

Let K be a class of algebras of the same type, let A,B ∈ K. For a homomorphism
f : A → B we define the mapping Con (f) : Con (A) → Con (B) by the rule that
Con (f)(α) is the congruence on B generated by the set {(f(x), f(y)) | (x, y) ∈ α}.
This map preserves 0 and ∨, and Con is a functor from K with homomorphisms
of algebras to the category of all algebraic lattices with compactness-preserving
complete join-homomorphisms. Hence Con c is a functor from K to the category S
of all (∨, 0)-semilattices with (∨, 0)-homomorphisms.

A diagram in K is a functor A : J → K, where J is a small category. For
every such diagram, the composite Con c ◦A is a diagram in the category of (∨, 0)-
semilattices.

Conversely, let D : J → S be a diagram in the category of (∨, 0)-semilattices.
A lifting of D in the category K of algebras is a functor A : J → K such that the
functors D and Con c ◦A are naturally equivalent. This means that for every j ∈ J

we have an isomorphism ψj : Con c(A(j)) → D(j) such that the diagram

Con c(A(j))
Con c(A(e))−−−−−−−→ Con c(A(k))

ψj

� ψk

�

D(j)
D(e)−−−−→ D(k)

commutes for every J-morphism e : j → k.
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In this paper we only consider the diagrams indexed by finite ordered sets,
viewed as small categories. A (J,≤)-indexed diagram in K consists of algebras
A(j) ∈ K (j ∈ J) and homomorphisms A(j, k) : A(j) → A(k) (j, k ∈ J , j ≤ k)
such that A(j, j) is the identity for every j and A(k, l) · A(j, k) = A(j, l) whenever
j ≤ k ≤ l.

The importance of the diagram lifting for the Problem 1.1 follows from the
following result of P. Gillibert.

Theorem 1.2 ([1], Corollary 7.13). Let K and L be finitely generated
congruence-distributive varieties. The following conditions are equivalent.

(i) ConK � ConL;
(ii) there are a natural number n and a diagram of finite (∨, 0)-semilattices indexed

by the ordered set {0, 1}n liftable in K and not liftable in L.

This theorem says that the containment ConK ⊆ ConL can be checked on the
finite level. However, it does not provide an algorithm, since there is no estimate
on n, and one needs to check infinitely many diagrams.

The type of diagrams liftable in K and not in L seems to be connected with the
critical points in the sense of the following definition. Let Lc denote the set of all
compact elements of an algebraic lattice L.

Definition 1.3. Let K and L be classes of algebras. The critical point of K under
L, denoted crit(K;L), is the smallest cardinality of Lc for L ∈ ConK\ConL (if
ConK � ConL) or ∞ (if ConK ⊆ ConL).

Theorem 1.4 ([1], Corollary 7.6). Let K and L be finitely generated congruence-
distributive varieties, let n ∈ ω. Consider the following conditions:

(i) crit(K;L) ≤ ℵn;
(ii) there exists a diagram of finite (∨, 0)-semilattices indexed by a product of n+ 1

finite chains liftable in K and not liftable in L.

Then (ii) implies (i). If n = 0 then also (i) implies (ii).

In view of the Problem 1.1, it is relevant to know whether the implication
(i) =⇒ (ii) holds also for n > 0. This seems to be a difficult question. A natural
approach is to investigate some concrete cases and then try to generalize the results.
However, the known examples of varieties with critical point larger than ℵ0 are quite
rare. The first pair of varieties with the critical point ℵ1 was exhibited in [1]. The
corresponding diagram of finite semilattices is indexed by {0, 1}2, i.e. the product
of two chains, as predicted by (ii).

For n ≥ 3 let Mn denote the variety of lattices generated by the (n+2)-element
lattice Mn depicted below.
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Mn

The bounded members of Mn also form a variety (denoted M01
n ), provided that

we consider 0 and 1 as nullary operations.
These varieties are well-known. An especially important fact is that we know all

subdirectly irreducible members of Mn (M01
n ). Up to isomorphism, the list consists

of 2 = {0, 1}, M3, M4, . . . ,Mn.
Our varieties form an increasing chain

M01
3 ⊂ M01

4 ⊂ M01
5 ⊂ . . .

As proved in [5] and [6], crit(M01
n+1;M01

n ) = ℵ2. More pairs of varieties with critical
point ℵ2 can be found in the recent paper [2]. In the present paper we construct
for every n ≥ 3 a diagram of finite (∨, 0)-semilattices indexed by a product of
three chains, which is liftable in M01

n+1 but not in M01
n . We hope that the methods

and ideas in our construction can be used to obtain more general results. Espe-
cially, we provide a further support for the conjecture that (i) and (ii) of 1.4 are
equivalent.

Let us remark that we do not know an example of a pair of varieties with critical
point ℵn, with n ≥ 3.

We use standard denotations. The symbol n denotes the linearly ordered set
{0, 1, 2, . . . , n−1}, which is sometimes regarded as a lattice or a semilattice (depend-
ing on the context).

2. M3 versus M4

To simplify the notation, we denote the elements of M3 by 0, 1, a, b, c, instead of
0, 1, a1, a2, a3. Consider the following diagram A3 : I → M3, where I is the cube,
i.e. an ordered set isomorphic to 2×2×2. The elements of I will be shortly denoted
as 000, 100, 010, . . . , 111. For every i ∈ I, A3(i) will be subalgebras of M3, namely
A3(000) = {0, 1}, A3(100) = {0, a, 1}, A3(010) = {0, b, 1}, A3(001) = {0, c, 1},
A3(110) = {0, a, b, 1}, A3(101) = {0, a, c, 1}, A3(011) = {0, b, c, 1}, A3(111) = M3.
For every i, j ∈ I, i ≤ j, the homomorphism A3(i, j) : A3(i) → A3(j) will be
the set inclusion. Further, let D3 = Con c ◦ A3 be the corresponding diagram of
distributive semilattices. Both diagrams are depicted below.
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Let us make several useful observations about the diagram D3. First, all mor-
phisms in D3 have the property, that nonzero elements do not map into zero. A
consequence is that in every lifting of D3, all morphisms must be injective. Second,
all morphisms 2 × 2 → 2 × 2 in D3 are isomorphisms. Moreover, with respect to
these morphisms, the “middle” elements of the semilattices 2×2 form a “12-cycle”,
namely

θA3(100)(0, a), θA3(010)(1, b) �→ θA3(110)(0, a) = θA3(110)(1, b),

θA3(010)(1, b), θA3(001)(0, c) �→ θA3(011)(1, b) = θA3(011)(0, c),

θA3(001)(0, c), θA3(100)(1, a) �→ θA3(101)(0, c) = θA3(101)(1, a),

θA3(100)(1, a), θA3(010)(0, b) �→ θA3(110)(1, a) = θA3(110)(0, b),

θA3(010)(0, b), θA3(001)(1, c) �→ θA3(011)(0, b) = θA3(011)(1, c),

θA3(001)(1, c), θA3(100)(0, a) �→ θA3(101)(1, c) = θA3(101)(0, a).

Trivially, A3 lifts D3. We claim that this is essentially the only way on how to
lift this diagram in any Mn. Let us be more specific. As all morphisms in any lifting
of D3 must be embeddings, we can assume that they are set inclusions.

Lemma 2.1. Let n ≥ 3 and let B : I → Mn lift D3, with all homomorphisms
being the set inclusions. Then

(i) B(111) is isomorphic to Mk for some k ∈ {3, . . . , n};
(ii) for every i ∈ {100, 010, 001}, B(i) is isomorphic to 3 and all three algebras are

different.

Proof. B(111) must be a simple algebra, which has a subalgebra whose congruence
lattice is isomorphic to 2 × 2. The only choice in Mn is (up to isomorphism)
B(111) = Mk for some k ∈ {3, . . . , n}.

The algebras B(i) for i ∈ {100, 010, 001} are subalgebras of Mk whose con-
gruence lattices are isomorphic to 2 × 2. Hence, B(i) = {0, x, y, 1} for some
x, y ∈Mk\{0, 1}. We claim that B(i)∩B(j) = {0, 1} for every i, j ∈ {100, 010, 001},
i �= j. We prove it for i = 100, j = 010.
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For contradiction, suppose that w∈B(100)∩B(010), w /∈{0, 1}. Since B(110) ⊇
B(100), B(101) ⊇ B(100), B(011) ⊇ B(010), we have w ∈ B(i) for every i ∈
{110, 101, 011}. Further, for every i ∈ {100, 010, 110, 101, 011} the algebra B(i) is
isomorphic to 3 or 2 × 2, so the two nontrivial congruences of B(i) are θB(i)(0, w)
and θB(i)(1, w) (shortly written as θi(0, w), θi(1, w)). Further, B(001) contains some
element x /∈ {0, 1}, so its nontrivial congruences are θ001(0, x) and θ001(1, x).

Now let us look closer at the “middle layer” homomorphisms (i.e. homomor-
phisms D3(i, j) with i ∈ {001, 010, 100}, j ∈ {110, 101, 011}). With respect to these
isomorphisms, the nontrivial elements of D3(i) (nontrivial congruences of A3(i)),
i ∈ {100, 010, 001, 110, 101, 011}, form a 12-cycle. We claim that this is not the case
in B. We need to consider the following two cases:

(1) If x = w then θ001(w, 0) maps into θ101(w, 0) and to θ011(w, 0), which means
that the elements θi(w, 0) with i ∈ {100, 010, 001, 110, 101, 011} form a 6-cycle.

(2) If x �= w then θ001(x, 0) maps into θ101(w, 1) and to θ011(w, 1), which means that
θ001(x, 0) together with the elements θi(w, 1) with i ∈ {100, 010, 110, 101, 011}
form a 6-cycle.

Hence, instead of a 12-cycle, we can only get two 6-cycles. This contradiction
shows that B(100)∩B(010) = {0, 1}. Moreover, both B(100) and B(010) are subal-
gebras of B(110). As B(110) is either isomorphic to 2× 2 or 3, this is only possible
if B(100) and B(010) are both three-element chains.

Now we are ready to deal with a more complicated diagram. It will be a diagram
A4 : J → M4, indexed by the set J = 3×3×3. Again, all algebras are subalgebras
of M4 and all morphisms are the set inclusions. The diagram is depicted below, in
the style similar to A3. The indexing is not indicated on the picture, so we assume
that A4(200) = {0, a, 1}, A4(020) = {0, b, 1}, A4(002) = {0, c, 1}. All other indices
can be easily deduced from this. The elements of M4 are denoted by 0, 1, a, b, c, d.

We consider the associated semilattice diagram D4 = Con c ◦ A4. This is a
diagram of finite (∨, 0)-semilattices, liftable in M4.

Theorem 2.2. D4 is not liftable in M3.

Proof. For contradiction, suppose that X : J → M3 lifts D4. Similarly as in
Lemma 2.1, we can assume that all algebras X (j) are subalgebras of X (222) and
all morphisms are set inclusions. Considering the restriction of X to {j ∈ J | 110 ≤
j ≤ 221} and using Lemma 2.1 we find that

(1) X (221) is isomorphic to M3;
(2) X (210), X (120) and X (111) are mutually distinct and isomorphic to 3.

Similarly, considering the subdiagrams of D4 determined by 011 ≤ j ≤ 122 and
101 ≤ j ≤ 212 respectively, we find that

(3) X (122) and X (212) are isomorphic to M3;
(4) X (111), X (021) and X (012) are mutually distinct and isomorphic to 3;
(5) X (201), X (111) and X (102) are mutually distinct and isomorphic to 3.
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Now, X (002) is a subalgebra of X (102). As the two algebras have the same congru-
ence lattice, and X (102) is isomorphic to 3, we obtain that X (002) = X (102).
For the same reasons, X (002) = X (012), hence X (102) = X (012). Similarly,
X (021) = X (020) = X (120) and X (201) = X (200) = X (210).

Hence, X (102) �= X (201) implies that X (102) �= X (210). Further, X (012) �=
X (021) implies that X (102) �= X (021) = X (120). Thus X (111), X (210), X (120)
and X (102) are four different subalgebras of X (222), each isomorphic to 3. However,
this is impossible, as X (222) must be simple and in M3.
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3. A Connection to Graph Theory

The example in the previous section is a very special one. Now we try to find similar
examples distinguishing between ConMn for different n ≥ 4. The elements of Mn

will be denoted 0, 1, a1, . . . , an.
Let us assume that A is a diagram of finite algebras in M01

n (n ≥ 3), indexed by
the product J = J1×J2×J3 of three finite chains. Denote u the largest element of J
and uk the largest element of Jk (k = 1, 2, 3). Assume that the following conditions
are satisfied:

(C1) A(u) = Mn;
(C2) all algebras in A are subalgebras of A(u);
(C3) all morphisms in A are the set inclusions;
(C4) A(i ∧ j) = A(i) ∩ A(j) for all i, j ∈ J .

To every such diagram A we associate an unoriented graph G(A) = (V,E),
whose set of vertices is V = {a1, . . . , an} and {x, y} ∈ E (the set of edges) if x �= y

and A(j) = {0, 1, x, y} for some j ∈ J .
Notice that the diagram A4 in the previous section satisfies (C1) − (C4) and

its associated graph is the complete graph on 4 vertices. In general, we can say the
following:

Lemma 3.1. The graph G(A) is planar.

Proof. We proceed by induction on n. The statement is true for n < 5, as every
graph with less than 5 vertices is planar. Let n ≥ 5. We distinguish two cases.

I. Suppose that there are x, y ∈ V , x �= y, such that x ∈ A(j) implies y ∈ A(j)
for every j ∈ J . Then x can be incident with at most one edge, namely {x, y}.
Without loss of generality we can assume that x = an. Consider the diagram A′,
which arises from A by omitting x = an from every A(j). Clearly, A′ satisfies (C1)–
(C4) with n−1 instead of n, so by the induction hypothesis, the corresponding graph
(V \ {x}, E′) is planar. Obviously, E \ {{x, y}} ⊆ E′, so (V \ {x}, E \ {{x, y}}) is
also planar. Since adding a vertex of degree one cannot harm the planarity, (V,E)
is planar too.

II. Suppose that for every x, y ∈ V , x �= y, there is j ∈ J with x ∈ A(j),
y /∈ A(j). Consider the incidence poset (P,≤) of G(A), i.e. P = V ∪ E and x < s

iff x ∈ V , s ∈ E and x ∈ s. According to Schnyder’s theorem [8], G(A) is planar if
and only if (P,≤) has the order-dimension at most 3. Thus, it suffices to define 3
linear orders on P , whose intersection is ≤.

First we define the orders on V . For i ∈ {1, 2, 3} let

Ki = {j = (j1, j2, j3) ∈ J | jk = uk whenever k �= i}.
For x, y ∈ V , i ∈ {1, 2, 3} we set

x <′
i y iff x ∈ A(j), y /∈ A(j) for some j ∈ Ki.
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It is clear that <′
i is a strict partial ordering of V . Denote by ≤′

i the associated
partial ordering. Let us extend it to a linear order ≤i on V arbitrarily. Now define
the relation �i on P as follows:

(1) if x, y ∈ V then x �i y iff x ≤i y;
(2) if x ∈ V and s = {y, z} ∈ E then x �i s iff x ≤i y or x ≤i z (and s �i x iff

y <i x and z <i x);
(3) if s = {x, y} ∈ E, t = {z, w} ∈ E with s ∩ t = ∅, then s �i t iff max{x, y} ≤i

max{z, w} (the maximums with respect to ≤i);
(4) if s = {x, y} ∈ E, t = {x, z} ∈ E, then s �i t iff y ≤i z.

It is easy to check that each �i is a linear order. We claim that ≤ is the inter-
section of �1, �2 and �3. If x < s, then x ∈ V and s = {x, y} ∈ E. Then obviously
x �i s for every i. Conversely, let p �i q for every i. We distinguish the following
four cases.

(a) Let p, q ∈ V . If p �= q, then, according to our assumption, q ∈ A(j) and
p /∈ A(j) for some j = (j1, j2, j3) ∈ J . By (C4) we have

A(j) = A(j1, u2, u3) ∩ A(u1, j2, u3) ∩ A(u1, u2, j3),

and we can assume without loss of generality that p /∈A(j1, u2, u3). Since
(j1, u2, u3) ∈ K1, we obtain q <′

1 p, which is a contradiction with p �1 q, showing
that p = q.

(b) Let p ∈ V , q = {z, w} ∈ E. In order to prove that p ≤ q we need to show
that p ∈ {z, w}. Suppose for contradiction that p �= z, p �= w. Since q is an edge,
there exist j ∈ J with A(j) = {0, 1, z, w}. Similarly as in the case (a), j can be
written as (j1, u2, u3) ∧ (u1, j2, u3) ∧ (u1, u2, j3). Without loss of generality we can
assume that p /∈ A(j1, u2, u3), which implies that z <′

1 p and w <′
1 p, contradicting

the assumption that p �1 q.
(c) Let p = {x, y} ∈ E, q ∈ V . Then x, y �i p for every i. Consequently,

x, y �i q for every i, which by part (a) of this proof implies that x = q and y = q,
a contradiction with x �= y. Thus, case (c) is impossible.

(d) Let p = {x, y} ∈ E, q = {z, w} ∈ E. The same argument as in (c) shows
that x, y �i q for every i. By the part (b) of this proof, x ∈ {z, w} and y ∈ {z, w},
which means that p = q.

Theorem 3.2. Let A be a diagram of finite algebras in M01
n (n ≥ 3), indexed

by the product J = J1 × J2 × J3 of three finite chains, satisfying the conditions
(C1) – (C4). Then the diagram Con c ◦ A is liftable in M01

4 .

Proof. By the above lemma, the graph G(A) is planar. According to the well-
known four-color theorem, G(A) is 4-colorable. Thus, there exists a map c :
{a1, . . . , an} → {a1, a2, a3, a4} such that c(x) �= c(y) whenever {x, y} ∈ E. We
extend c to a mapping Mn →M4 by setting c(0) = 0, c(1) = 1.
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Now we define a diagram B : J → M01
4 as follows:

(1) if A(j) is isomorphic to Mk for some k ≥ 3, then B(j) = M4;
(2) if A(j) is isomorphic to 2 or 3 or 2× 2, then B(j) = c(A(j));
(3) for every j, k ∈ J , j ≤ k, the morphism B(j, k) is the set inclusion.

It is clear that B is correctly defined. We claim that B lifts Con c ◦ A. To prove
it, we have to define for every j ∈ J an isomorphism ψj : Con cA(j) → Con cB(j)
such that the diagram

Con c(A(j))
Con c◦A(j,k)−−−−−−−−→ Con c(A(k))

ψj

� ψk

�

Con c(B(j))
Con c◦B(j,k)−−−−−−−−→ Con c(B(k))

commutes for every j ≤ k.
If A(j) is isomorphic to Ml for some l ≥ 3, then both A(j) and B(j) are simple

and the isomorphism ψj : Con cA(j) → Con cB(j) is obvious. If A(j) is isomorphic
to 2 or 3 or 2×2, then the restriction of c is an isomorphism A(j) → B(j). Indeed,
the cases A(j) ∼= 2 and A(j) ∼= 3 are trivial, in the case A(j) ∼= 2 × 2 we use the
fact that c is a coloring. So, we can define the isomorphism ψj by

ψj(θ) = {(c(x), c(y)) | (x, y) ∈ θ}.

It is easy to observe that every congruence on every A(j) is of the form θA(j)(0, x)
or θA(j)(1, x) for some x ∈ A(j) and ψj maps this congruence into θB(j)(0, c(x)) or
θB(j)(1, c(x)), respectively. Now it is easy to check the commutativity of the above
diagram. For every x ∈ A(j) we have

Con cB(j, k)(ψj(θA(j)(0, x))) = Con cB(j, k)(θB(j)(0, c(x))) = θB(k)(0, c(x))

and

ψk(Con cA(j, k)(θA(j)(0, x))) = ψk(θA(k)(0, x)) = θB(k)(0, c(x)),

and similarly for the congruences of the form θA(j)(1, x). This completes the
proof.

4. A General Construction

In this section we construct a diagram liftable in Mn and not in Mn−1 (n > 3).
Before proving the main result we need to introduce one technical tool. Let

A : J → V be a diagram of algebras, indexed by a poset J with a largest element
u. For every α ∈ Con (A(u)) and every j ∈ J we set

αj = {(x, y) ∈ A(j) | (A(j, u)(x),A(j, u)(y)) ∈ α} ∈ Con (A(j)).
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Let us denote A′(j) = A(j)/αj . Further, for every j ≤ k there exists a natural
homomorphism A′(j, k) : A′(j) → A′(k) defined by x/αj �→ A(j, k)(x)/αk. It is
a routine to check that A′ is again a diagram of algebras, indexed by J . We also
write A′ = A/α.

Lemma 4.1. Let A : J → V be a diagram of finite algebras indexed by a poset
J with a largest element u. Let B : J → W lift Con c ◦ A via isomorphisms
ψj : Con c(A(j)) → Con c(B(j)). Then

(i) for every α ∈ Con c(A(u)) the diagram B/ψu(α) lifts Con c ◦ A/α;
(ii) for every α, β ∈ Con c(A(u)) and every j ∈ J , if αj = βj then ψu(α)j = ψu(β)j .

Proof. It is clear that

αj =
∨

{δ ∈ Con c(A(j)) | Con cA(j, u)(δ) ⊆ α}.
Since ψj is an isomorphism, we have

ψj(αj) =
∨

{ψj(δ) | ψu(Con cA(j, u)(δ)) ⊆ ψu(α)}

=
∨

{ψj(δ) | Con cB(j, u)(ψj(δ)) ⊆ ψu(α)}

=
∨

{ε ∈ Con c(B(j)) | Con cB(j, u)(ε) ⊆ ψu(α)} = ψu(α)j .

Thus, ψj can be restricted to the isomorphism ↑αj → ↑ψu(α)j , or equivalently,
Con c(A(j)/αj) → Con c(B(j)/ψu(α)j), showing (i).

Now, let α, β satisfy the assumptions of (ii). Then ψu(α)j = ψj(αj) = ψj(βj) =
ψu(β)j .

If all morphisms of A are the set inclusions, then, for every α ∈ Con (A(u)) and
j ≤ u, the congruence αj is the restriction of α to A(j). To simplify the notation,
we often write A(j)/α instead of A(j)/αj . Further, for j ≤ m we regard A(j)/α as
a subalgebra of A(m)/α, identifying the αj-classes of A(j) with the corresponding
αm-classes of A(m). Hence, by saying that A(j)/α and A(k)/α are different subal-
gebras of A(m)/α (j, k ≤ m) we really mean that A(j) and A(k) intersect different
αm-classes of A(m). Notice however, that the inequality A(j)/α �= A(k)/α does
not depend on the choice of m.

Now we can proceed with our construction. Let us fix n > 3 and consider the
following three linear orders on the set {1, 2, . . . , n}:

1 <1 2 <1 3 <1 · · · <1 n;

1 <2 n <2 n− 1 <2 n− 2 <2 . . . <2 2;

2 <3 n <3 n− 1 <3 · · · <3 3 <3 1.

Let Zik be the unique k-element lower subset of the ordered set ({1, . . . , n},≤i)
(i ∈ {1, 2, 3}, 1 ≤ k ≤ n).
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Now we are ready to define a commutative diagram in Mn (in fact, in M01
n ).

As the index set we take the product of three (n−1)-element chains J = (n − 1)×
(n − 1) × (n − 1). Let F be the free algebra in M01

n freely generated by the set
{1, . . . , n}. For every e = (j, k, l) ∈ J denote X(e) = Z1

j+2 ∩ Z2
k+2 ∩ Z3

l+2 and
let A(e) be the subalgebra of F generated by the set X(e). It is easy to see that
X(d ∧ e) = X(d) ∩X(e) and A(d ∧ e) = A(d) ∩ A(e) for every d, e ∈ J . Further,
A(d) ⊆ A(e) whenever d, e ∈ J , d ≤ e, so we can define the homomorphism
A(d, e) : A(d) → A(e) as the set inclusion. Clearly, we have a commutative diagram
A : J → Mn.

Theorem 4.2. The diagram Con c ◦ A is not liftable in Mn−1.

Proof. Suppose for contradiction that B lifts Con c ◦A. Similarly as in 2.1, we can
assume that all algebras B(j) (j ∈ J) are subalgebras of B(u), where u is the top
element of J , and that all morphisms in B are set inclusions. So, for every j ∈ J

we have an isomorphism ψj : Con c(A(j)) → Con c(B(j)) such that

Con c(A(j))
Con c◦A(j,k)−−−−−−−−→ Con c(A(k))

ψj

� ψk

�

Con c(B(j))
Con c◦B(j,k)−−−−−−−−→ Con c(B(k))

commutes for every j ≤ k.
Consider the homomorphism f : A(u) = F → Mn defined by f(i) = ai

for every i ∈ {1, . . . , n}. Since A(u) is finite, we have Ker(f) ∈ Con c(A(u)). By
4.1, the diagram B/ψu(Ker(f)) lifts the diagram Con c ◦ A/Ker(f). Let us denote
ψu(Ker(f)) = β.

Further, for every k ∈ {3, . . . , n} we denote v(k) = (k− 2, n− k, n− k) ∈ J , and
v(1) = (0, 0, n− 2), v(2) = (0, n− 2, 0). It is easy to check that X(v(k)) = {k}, so
A(v(k)) as well as A(v(k))/Ker(f) are isomorphic to 3.

For k ∈ {3, . . . , n − 1} consider the subdiagram of A/Ker(f) indexed by {j ∈
J | (k− 2, n− k− 1, n− 3) ≤ j ≤ (k− 1, n− k, n− 2)}. One can check directly that
X(k−2, n−k−1, n−2) = {1},X(k−2, n−k, n−3) = {k},X(k−1, n−k−1, n−3) =
{k+1} and X(k−1, n−k, n−2) = {1, k, k+1}. Hence, this subdiagram is naturally
equivalent to the diagram A3 and Lemma 2.1 says that B(k − 1, n− k, n− 2)/β is
isomorphic to some Ml and the algebras B(k − 2, n− k − 1, n− 2)/β, B(k− 2, n−
k, n− 3)/β and B(k− 1, n− k− 1, n− 3)/β are its distinct subalgebras isomorphic
to 3.

Further, A(k − 2, n− k − 1, n− 2) = A(v(1)), which implies that B(k − 2, n−
k − 1, n − 2)/β and B(v(1))/β have isomorphic congruence lattices. Since v(1) ≤
(k−2, n−k−1, n−2), B(v(1))/β is a subalgebra of B(k−2, n−k−1, n−2)/β, which
is isomorphic to 3. This is only possible if B(v(1))/β = B(k− 2, n− k− 1, n− 2)/β.
The same argument shows that B(v(k))/β = B(k−2, n−k, n−3)/β and B(v(k+1))/
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β = B(k − 1, n− k − 1, n− 3)/β. Hence, B(v(1))/β, B(v(k))/β and B(v(k + 1))/β
are three different subalgebras of B(u)/β, each isomorphic to 3.

Interchanging the roles of the second and third coordinates one can show that
B(v(2))/β, B(v(k))/β and B(v(k + 1))/β are different subalgebras of B(u)/β iso-
morphic to 3.

The same reasoning for the subdiagram with (0, n−3, n−3) ≤ j ≤ (1, n−2, n−2)
shows that B(v(1))/β, B(v(2))/β and B(v(3))/β are different subalgebras of B(u)/β
isomorphic to 3.

The algebra B(u)/β is simple and has subalgebras isomorphic to 3. The only pos-
sibility in Mn−1 is that B(u)/β is isomorphic to someMl. Its subalgebras B(v(k))/β
(k = 1, . . . n) are isomorphic to 3. The proof will be completed by proving that
they all are mutually different (contradicting the assumption B(u) ∈ Mn−1). How-
ever, this cannot be done by considering the diagram A/Ker(f) alone. Notice that
A/Ker(f) satisfies (C1) – (C4) from the previous section, so Con c ◦ A/Ker(f) is
liftable in M4. The graph G(A/Ker(f)) looks as follows.
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In accordance with the previous section, this graph is planar, and hence 4-
colorable. So far we have proved that B(v(k))/β �= B(v(m))/β whenever (k,m) is
an edge. To achieve more, we modify the homomorphism f .

So, let k,m ∈ {1, . . . , n}, k < m. If k ∈ {1, 2} or m− k = 1, then the inequality
B(v(k))/β �= B(v(m))/β is already proven. Suppose now that k ≥ 3 and m−k ≥ 2.
Let g : F → Mn be the unique homomorphism with g(m) = a2 and g(i) = ai for
i �= m. By Lemma 4.1, the diagram B/ψu(Ker(g)) lifts the diagram Con c◦A/Ker(g).
Let us denote γ = ψu(Ker(g)).

By the same way as before we can argue that

(D1) B(v(i))/γ is isomorphic to 3 for every i ≥ 3;
(D2) B(v(2))/γ, B(v(i))/γ and B(v(i+1))/γ are different for every i /∈ {m−1,m};
(D3) B(v(1))/γ, B(v(i))/γ and B(v(i+ 1))/γ are different for every i ≥ 3.
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Now, for j = (m − 2, n − 2, n − m + 1) we have X(j) = {2,m − 1,m}, so
A(j)/Ker(g) is isomorphic to 2 × 2. The congruence lattice of this algebra, and
consequently of B(j)/γ, is also isomorphic to 2×2. Since B(j)/γ is a subalgebra of
B(u)/γ, which is simple, this is only possible if B(j)/γ is isomorphic to 3 or 2× 2.
The algebras B(v(2))/γ, B(v(m− 1))/γ and B(v(m))/γ are subalgebras of B(j)/γ,
so at least two of them must be equal. By (D2), B(v(2))/γ, B(v(m − 2))/γ and
B(v(m−1))/γ are different. By (D3), B(v(1))/γ, B(v(m−1))/γ and B(v(m))/γ are
different. Thus, the only possibility is B(v(2))/γ = B(v(m))/γ. Hence, B(v(2))/γ �=
B(v(k))/γ implies that B(v(m))/γ �= B(v(k))/γ.

Finally, consider j = (n − 2, n − 3, n − 2). We have X(j) = {1, 3, 4, . . . , n}, so
B(j)/γ contains both B(v(m))/γ and B(v(k))/γ as subalgebras. We obtain that
Ker(f)j = Ker(f) � A(j) = Ker(g) � A(j) = Ker(g)j . By Lemma 4.1, βj = γj ,
hence B(v(k))/γ �= B(v(m))/γ implies that B(v(k))/β �= B(v(m))/β.
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[9] J. Tůma and F. Wehrung, Lifting of diagrams of semilattices by diagrams of dimen-

sion groups, Proc. London Math. Soc. 87 (2003) 1–28.
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