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Abstract. This paper is a continuation of the research motivated by G. Grätzer’s study

of affine completeness for Boolean algebras and distributive lattices from 1962 and 1964,
respectively and by the 1995 work of G. Grätzer and E.T. Schmidt on unary isotone

congruence-preserving functions of distributive lattices. We present a complete list of gen-
erators for the clone C(L) of all congruence-preserving functions of any distributive lattice

L. We introduce a general problem of finding a nice generating set for the clone C(A) of

all congruence-preserving functions of a given algebra A.

1. Introduction

A finitary function f : An → A on an algebra A is called congruence-preserving
(or compatible) if, for any congruence θ of A, (ai, bi) ∈ θ, i = 1, . . . , n, implies that

(f(a1, . . . , an), f(b1, . . . , bn)) ∈ θ.

Typical compatible functions are polynomial functions. A polynomial function
of an algebra A is a function that can be obtained by composition of the basic
operations of A, the projections and the constant functions. As all of these are
congruence-preserving, polynomial functions of A are congruence-preserving too.

There are algebras, on which polynomial functions are the only compatible func-
tions. Such algebras are called affine complete. Hence one can imagine affine
complete algebras as algebras having ‘many’ congruences. The problem of char-
acterizing algebras which are affine complete was first formulated in G. Grätzer’s
monograph [6]. As every algebra is a reduct of some affine complete algebra (it suf-
fices to add to the basic operations of a given algebra all its compatible functions
to make it affine complete), in [1] the problem was restricted into the following
formulation: characterize affine complete algebras in your favourite variety. Many
varieties for which the problem had already been solved are mentioned in [1], [8]
and [9]. An important source of inspiration for the present paper is G. Grätzer’s so-
lution for Boolean algebras [4] and bounded distributive lattices [5]. The intensive
study of various kinds of polynomial completeness from the 1960s to the 1990s had
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resulted in the monograph by K. Kaarli and A.F. Pixley [9] of which a significant
part is devoted to affine completeness.

Our aim in this paper is more general than the study of affine completeness.
We believe that the concept of compatibility is worth investigating also in algebras
that are not affine complete, because it it so closely connected with the fundamental
algebraic notions of a congruence and a polynomial. Therefore, we would like to
initiate a project of describing the compatible functions of an algebra in a given
(favourite) variety no matter whether the algebra is affine complete or not. Since
compatible functions form a clone, our wish is to express every compatible function
as a composition of functions from some nice and well understood family. In other
words, we would like to find a nice generating set for the clone of all compatible
functions. (We recall that a clone on a set A is a set of finitary functions containing
all projections and closed under composition.)

Problem 1. Given an algebra A, find a nice generating set for the clone C(A) of
all compatible functions of A.

A description of this kind is obvious for the clone of all polynomial functions,
where the generating set consists of the basic operations and constants. Thus the
answer is known if the algebra A is affine complete. If A is not affine complete,
we seek for an extension of this generating set by some typical compatible non-
polynomial functions.

For an algebra A, a function f : An → A is called a local polynomial of A if
for every finite set S ⊆ An there is a polynomial function p : An → A of A which
coincides with f on S. It is clear that local polynomials form a clone, which is a
subclone of C(A). Finding generators for this clone could be an important step
towards the solution of the above problem.

Problem 2. Given an algebra A, find a nice generating set for the clone LP (A)
of all local polynomial functions of A.

The effort to describe compatible functions on algebras of some special kind
is not completely new. The problem was solved for Boolean algebras in [4] (by
showing that every Boolean algebra is affine complete). A description of compati-
ble functions on bounded distributive lattices is contained implicitly in the initial
papers [4] and [5] of G. Grätzer and explicitly in a more recent paper [3] of J. D. Far-
ley. (However, the latter description, see Lemma 2.2 below, is not of the kind we
propose to achieve.)

The local polynomial functions on distributive lattices have been characterized by
D. Dorninger and G. Eigenthaler ([2]) as exactly the isotone compatible functions.
The first attempt to describe the generators of the clone LP (A) for distributive
lattices was made in [7] by G. Grätzer and E.T. Schmidt. This paper came with the
idea that local polynomial fuctions might be described as polynomials in a suitable
extension of a given algebra. This idea has been further developed in [11] for the
cases of Stone and Kleene algebras. In our present paper it is the key to the solution
of the above Problems for all (in general unbounded) distributive lattices.
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2. The bounded case

Let L = 〈L;∨,∧, 0, 1〉 be a bounded distributive lattice and let f : Ln → L be a
compatible function. By the characteristic function of f we mean its restriction to
{0, 1}n. We start by listing results on compatible functions of bounded distributive
lattices published in [5].

We recall that a Boolean interval [a, b] in L means that the bounded lattice
([a, b];∨,∧, a, b) is Boolean; that is, for every element c ∈ [a, b] there exists its
complement c′ ∈ [a, b] such that c∨ c′ = b and c∧ c′ = a. An interval [a, b] is said to
be non-trivial if a < b. A special case of a non-trivial Boolean interval is a covering
pair a < b of elements of L meaning that there is no element c in L with a < c < b.

Lemma 2.1. ([5], Theorem and Corollaries 2 and 3) For a bounded distributive
lattice L = 〈L;∨,∧, 0, 1〉, the following hold:

(i) The characteristic function ϕ of a compatible function f : Ln → L deter-
mines f uniquely.

(ii) A function ϕ : {0, 1}n → L is the characteristic function of a compatible
function f : Ln → L if and only if for every a < b in {0, 1}n, the interval
[ϕ(b), ϕ(a) ∨ ϕ(b)] of L is Boolean.

(iii) A compatible function f is a polynomial of L if and only if its characteristic
function ϕ is isotone.

(iv) The lattice L is affine complete if and only if L does not contain a non-
trivial Boolean interval.

The following description of compatible functions comes from [3]. (It can also be
deduced from [4] and [5].) It uses the fact that every bounded distributive lattice
L can be canonically embedded into a Boolean algebra (using a set-theoretical
representation of L), the complement operation ′ refers to this Boolean algebra.
Here and in the sequel we write elements of {0, 1}n in the form a = (a1, . . . , an).

Lemma 2.2. ([3], Theorem 4.7) Let f : Ln → L be a compatible function on
a bounded distributive lattice L. Then

f(x) =
∨

a∈{0,1}n

(f(a) ∧
∧

ai=1

xi ∧
∧

ai=0

x′i)

for every x = (x1, . . . , xn) ∈ Ln.

Of course, the complement x′ for x ∈ L need not belong to L, so the above
formula only makes sense if we consider L embedded into a Boolean algebra. In
this paper we present another expression for compatible functions, in which we only
use functions defined on L itself.

Our goal is to find a reasonably simple set S of functions on L such that every
compatible function of L can be obtained via composition from the finitary projec-
tions and the set S. Good candidates for the generating set have been discovered
in [5]. If [a, b] is a Boolean interval in a lattice L, then the unary function

c[a,b](x) = ((x ∧ b) ∨ a)′,
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where ′ denotes the complementation inside the Boolean lattice [a, b], is compatible.
If a 6= b, then the function is not isotone and hence not polynomial. Now we will
prove that these functions, together with the polynomials, generate the clone C(L)
of all compatible functions of L.

Let g : Ln → L be a compatible function on a bounded distributive lattice
L. Every n-tuple a ∈ {0, 1}n can be considered as an element of Ln. For every
a, b ∈ {0, 1}n with a ≤ b the interval Jab = [g(a)∧ g(b), g(a)] is Boolean by a result
analogous to Lemma 2.1(ii), so we can consider the unary function

cJab
(x) = ((x ∧ g(a)) ∨ (g(a) ∧ g(b)))′

(in the formula above, ′ means the complementation inside Jab). We note that
cJab

(0) = g(a) and cJab
(1) = g(a) ∧ g(b).

The following result gives a canonical representation of compatible functions on
bounded distributive lattices. (We sometimes substitute the notation ai = 1 with
i ∈ a−1(1) and consider, as usual,

∨
∅ xi = 0 and

∧
∅ xi = 1.)

Theorem 2.3. Let g : Ln → L be a compatible function on a bounded distributive
lattice L. Then, for every x = (x1, . . . , xn) ∈ Ln,

g(x) =
∨

a∈{0,1}n

Ca(x),

where
Ca(x) =

∧
b∈{0,1}n,b≥a

Kab(x)

and
Kab(x) = (cJab

(
∨

i∈b−1(1)∩a−1(0)

xi) ∧
∧

i∈a−1(1)

xi) ∨
∨

i∈b−1(0)

xi.

Proof. It suffices to prove the equality for x = (x1, . . . , xn) ∈ {0, 1}n according to
Lemma 2.1(i). Let us consider the conjunct Ca(x) for an arbitrarily fixed n-tuple
a ∈ {0, 1}n. We distinguish the following three cases:

1. If a 6≤ x then there is i ∈ {1, . . . , n} such that ai = 1, xi = 0, so we obtain
Ka,1(x) = 0, whence Ca(x) = 0 .

2. If a = x then for every b ≥ a,

Ka,b(x) = (cJab
(0) ∧ 1) ∨ 0 = g(a).

Hence Ca(x) = g(a) = g(x).
3. If a < x then there is i ∈ {1, . . . , n} such that ai = 0, xi = 1, so

Ca(x) ≤ Ka,x(x) = (cJax(1) ∧ 1) ∨ 0 = g(a) ∧ g(x) ≤ g(x).

Now we easily conclude ∨
a∈{0,1}n

Ca(x) = g(x)

as required. �

As a consequence we obtain:
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Corollary 2.4. Every compatible function on a bounded distributive lattice is a
composition of polynomials and complementations on Boolean intervals.

G. Grätzer’s characterization of affine complete bounded distributive lattices (see
Lemma 2.1(iv)) now immediately follows from our result. If there are no non-trivial
Boolean intervals, then every interval complementation is a constant function, so
every compatible function is a polynomial. If there is a non-trivial Boolean inteval
[a, b], then c[a,b] is a compatible non-polynomial function.

3. The extension theorem

From this section the concepts of almost principal ideals and filters will be im-
portant in our investigations. Let us recall that an ideal I of a lattice L is said to
be principal if it is of the form ↓u = {x ∈ L |x ≤ u}, for some u ∈ L. It is said that
I is almost principal if its intersection with every principal ideal of L is a principal
ideal of L. If L has a largest element, then every almost principal ideal is principal.
In general, there are almost principal ideals which are not principal (see [9] or [12].)
The notions of principal and almost principal filter are defined dually. The whole
lattice L is also regarded as an (almost principal) ideal and filter.

The almost principal ideals have been first considered in the context of semi-
lattices in [10]. Their relevance for affine completeness of distributive lattices and
Stone algebras has been established in [12] and [8], respectively.

Let I(L) and F(L) denote the sets of all almost principal ideals and almost
principal filters of the lattice L, respectively.

For every x ∈ L, I ∈ I(L) and F ∈ F(L), we denote xI = max(I ∩ ↓x)
and xF = min(F ∩ ↑x). This defines unary functions fI and fF on L, given by
fI(x) = xI , fF (x) = xF . These functions are called projections on almost principal
ideals (filters).

The following result comes from [12]:

Lemma 3.1. For every distributive lattice L and every I ∈ I(L), F ∈ F(L), the
functions fI and fF are compatible. A distributive lattice L is affine complete if
and only if the following conditions hold:

(i) L does not contain a non-trivial Boolean interval;
(ii) every proper almost principal ideal of L is principal;
(iii) every proper almost principal filter of L is principal.

Hence we have two new types of compatible functions. As observed in [7] and
[13], these functions can be interpolated by polynomials in some extensions of L,
which we now recall.

For every distributive lattice L, the set I(L) ordered by the set inclusion is again
a distributive lattice. In fact, it is a sublattice of the lattice I(L) of all ideals of L
(see [13]). There is a natural embedding L → I(L) given by x 7→ ↓x. Identifying x
with ↓x we will assume that L is a sublattice of I(L).

Dually, we can consider L as a sublattice of the distributive lattice F(L). Note
that the natural ordering of F(L) is given by the inverse set inclusion: F1 ≤ F2 iff
F1 ⊇ F2.
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Finally, we can consider L as a sublattice of the distributive lattice F(I(L)).

Lemma 3.2. For every distributive lattice L the following conditions holds.
(i) L is an ideal of I(L) and a filter of F(L).
(ii) L is convex in F(I(L)).
(iii) There is a canonical isomorphism F(I(L)) → I(F(L)), which preserves L.

Proof. Part (i) is easy to check (or we refer to [13] for its proof). Part (ii) follows
from the fact that ideals and filters are convex, so that L is convex in I(L) and
I(L) is convex in F(I(L)). The canonical isomorphism ϕ : F(I(L)) → I(F(L))
is given by

ϕ(G) = {F ∈ F(L) | F ∩ J 6= ∅ for every J ∈ G}.
It was proved in [13] that ϕ is an isomorphism. And it is easy to check that ϕ
preserves L. Indeed, if x ∈ L and G = {I ∈ I(L) | I ⊇ ↓x} is the element of
F(I(L)) representing x, then ϕ(G) = {F ∈ F(L) | F ≤ ↑x}, which is the element
of I(F(L)) representing x. This completes the proof. �

Hence, I(L) can be regarded as the filter of F(I(L)) generated by L. Similarly,
F(L) can be considered as the ideal of I(F(L)). Since the canonical isomorphism
ϕ preserves L, we can also assume that (up to isomorphism) I(L) is the filter of
I(F(L)) generated by L and F(L) is the ideal of F(I(L)) generated by L.

For every prime ideal P on a distributive lattice L let θP denote the congruence
on L with the equivalence classes P and L \ P , that is, θP = P 2 ∪ (L \ P )2.

Lemma 3.3. Let P be a prime ideal on a distributive lattice L. Then (xI , yI) ∈ θP

for every x, y ∈ L \ P and I ∈ I(L).

Proof. The statement follows from the fact that θP is a congruence and fI is com-
patible. �

Lemma 3.4. Let f : Ln → L be a compatible function on a distributive lattice L.
Then, for every I1, . . . , In ∈ I(L), the set J = {x ∈ L | x ≤ f(xI1 , . . . , xIn

)} is an
almost principal ideal of L and, for every y ∈ L, yJ = y ∧ f(yI1 , . . . , yIn

).

Proof. Let x ∈ J and y ≤ x. We claim that y ∈ J . Suppose, for contradiction, that
y 6≤ f(yI1 , . . . , yIn). Then there exists a prime ideal P of L such that y /∈ P and
f(yI1 , . . . , yIn

) ∈ P , whence x /∈ P as y ≤ x. By Lemma 3.3, (xIi
, yIi

) ∈ θP for every
i. As by assumption f(xI1 , . . . , xIn

) ≥ x, we get f(xI1 , . . . , xIn
) /∈ P , which implies

that (f(xI1 , . . . , xIn
), f(yI1 , . . . , yIn

)) /∈ θP , and contradicts the compatibility of f .
Now let y ∈ L. We claim that y ∧ f(yI1 , . . . , yIn) = max J ∩ ↓y. Certainly,

z := y ∧ f(yI1 , . . . , yIn) ≤ y. Let us suppose that z /∈ J , i.e. z 6≤ f(zI1 , . . . , zIn).
Again, there is a prime ideal Q of L such that f(zI1 , . . . , zIn

) ∈ Q and z /∈ Q.
Since y ≥ z, we have y /∈ Q and similarly f(yI1 , . . . , yIn

) /∈ Q. By Lemma 3.3,
(yIi

, zIi
) ∈ θQ for every i = 1, . . . , n and (f(yI1 , . . . , yIn

), f(zI1 , . . . , zIn
)) /∈ θQ,

which contradicts the compatibility of f .
We have shown z ∈ J ∩ ↓y. To prove the maximality, let t ∈ J ∩ ↓y. Suppose

that t 6≤ z. Then t /∈ R, z ∈ R for some prime ideal R. From t /∈ R we obtain
that y /∈ R and t ≤ f(tI1 , . . . , tIn

) /∈ R. Since z = y ∧ f(yI1 , . . . , yIn
) ∈ R, the
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primality of R yields that f(yI1 , . . . , yIn) ∈ R. By Lemma 3.3, (yIi , tIi) ∈ θR for
every i = 1, . . . , n, which contradicts the compatibility of f .

Thus, max(J ∩ ↓y) exists for every y ∈ L. It remains to prove that J is closed
under joins: if x, y ∈ J , then max(J ∩ ↓(x ∨ y)) ≥ x, y, so max(J ∩ ↓(x ∨ y)) must
be equal to x ∨ y. �

For every compatible function f : Ln → L on a distributive lattice L, let
f : I(L)n → I(L) be defined by

f(I1, . . . , In) = {x ∈ L | x ≤ f(xI1 , . . . , xIn
)}.

We have just proved the correctness of this definition.

Lemma 3.5. For every compatible function f on a distributive lattice L, the func-
tion f is compatible on I(L).

Proof. For contradiction, suppose that f is not compatible. Then there exists a
prime ideal P on I(L) and ideals I1, . . . , In, J1, . . . , Jn ∈ I(L) such that (Ii, Ji) ∈ θP

for every i and, without loss of generality, f(I1, . . . , In) ∈ P and f(J1, . . . , Jn) /∈ P .
We denote M = {i ∈ {1, . . . , n} | Ii ∈ P}. (As (Ii, Ji) ∈ θP , we note that Ii ∈ P iff
Ji ∈ P for every i.) It follows

f(J1, . . . , Jn) ∧
∧

i/∈M

Ii ∧
∧

i/∈M

Ji 6≤ f(I1, . . . , In) ∨
∨

i∈M

Ii ∨
∨

i∈M

Ji.

(The right hand side belongs to P while the left hand side does not.) So, there
exists y ∈ L such that

y ∈ f(J1, . . . , Jn) ∧
∧

i/∈M

Ii ∧
∧

i/∈M

Ji; (1)

y /∈ f(I1, . . . , In) ∨
∨

i∈M

Ii ∨
∨

i∈M

Ji. (2)

We obtain from (2) that

y 6≤ yf(I1,...,In) ∨
∨

i∈M

yIi ∨
∨

i∈M

yJi . (3)

By Lemma 3.4, yf(I1,...,In) = y ∧ f(yI1 , . . . , yIn
), so (3) and the distributivity

imply that

y 6≤ f(yI1 , . . . , yIn
) ∨

∨
i∈M

yIi
∨

∨
i∈M

yJi
. (4)

Thus, there exists a prime ideal Q on L such that y /∈ Q, f(yI1 , . . . , yIn) ∈ Q
and yIi , yJi ∈ Q for every i ∈ M . Further, y ∈ f(J1, . . . , Jn) obviously means that
y ≤ f(yJ1 , . . . , yJn), hence f(yJ1 , . . . , yJn) /∈ Q.

For every i ∈ M we have (yIi
, yJi

) ∈ θQ. From (1) it follows that for every
i /∈ M we have y ∈ Ii ∩ Ji, hence yIi

= y = yJi
, so (yIi

, yJi
) ∈ θQ for every

i = 1, . . . , n. Since (f(yI1 , . . . , yIn
), f(yJ1 , . . . , yJn

) /∈ θQ, we obtain a contradiction
with the compatibility of f . �
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Lemma 3.6. For every compatible function f : Ln → L on a distributive lattice
L and every x1, . . . , xn ∈ L,

f(↓x1, . . . , ↓xn) = ↓f(x1, . . . , xn).

Proof. By the definition,

f(↓x1, . . . , ↓xn) = {x ∈ L | x ≤ f(x ∧ x1, . . . , x ∧ xn)}.
Suppose for contradiction that x ≤ f(x ∧ x1, . . . , x ∧ xn) and x 6≤ f(x1, . . . , xn) for
some x ∈ L. Then there exists a prime ideal P on L such that x /∈ P (hence also
f(x ∧ x1, . . . , x ∧ xn) /∈ P ) and f(x1, . . . , xn) ∈ P . For every i we have xi ∈ P iff
x ∧ xi ∈ P , hence (xi, x ∧ xi) ∈ θP , which contradicts the compatibility of f .

Thus, f(↓x1, . . . , ↓xn) ⊆ ↓f(x1, . . . , xn). To show the inverse inclusion, assume
for contradiction that x 6≤ f(x ∧ x1, . . . , x ∧ xn) and x ≤ f(x1, . . . , xn) for some
x ∈ L. Then, for some prime ideal P on L, f(x ∧ x1, . . . , x ∧ xn) ∈ P and x /∈ P ,
hence f(x1, . . . , xn) /∈ P . Again, xi ∈ P iff x ∧ xi ∈ P , so (xi, x ∧ xi) ∈ θP , a
contradiction with the compatibility of f . �

If we identify x ∈ L with ↓x ∈ I(L), then Lemma 3.6 says that f is an extension
of f . Hence, every compatible function on L can be extended to a compatible
function on I(L). (In [13] this was proved for isotone compatible functions.)

Of course, an analogous statement holds for the lattice F(L) of all almost prin-
cipal filters on L. By iterating these two constructions we obtain the following
result.

Theorem 3.7. Every compatible function on a distributive lattice L can be extended
to a compatible function on F(I(L)).

Since F(I(L)) is a bounded distributive lattice, Theorem 3.7 allows us to use
Theorem 2.3 for the unbounded case, which will be done in Section 5.

4. Classification of compatible functions

The first four types of compatible functions on distributive lattices L were men-
tioned in the previous sections, namely

type 1: lattice polynomials;
type 2: c[a,b](x) = ((x ∨ a) ∧ b)′ (complementation in a Boolean interval [a, b]);
type 3: fI(x) = xI for an almost principal ideal I in L;
type 4: fF (x) = xF for an almost principal filter F in L.
Thus, Corollary 2.4 says that every compatible function on a bounded dis-

tributive lattice is a composition of functions of types 1 and 2. G. Grätzer and
E.T. Schmidt proved in [7] that every unary isotone compatible function on any
distributive lattice is a composition of functions of types 1-4. However, this is not
true for binary functions. A new type was discovered in [13]. For every a ∈ F(I(L)),
consider the binary polynomial function g on F(I(L)) given by g(x, y) = (a∨x)∧y.
It is easy to see that this function can be restricted to L. (Indeed, x∧y ≤ g(x, y) ≤ y,
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so the convexity of L in F(I(L)) implies that g(x, y) ∈ L for every x, y ∈ L.) This
restriction is a compatible function on L. This is a simple consequence of con-
gruence extension property for distributive lattices. (Every θ ∈ Con(L) can be
extended to a congruence θ′ ∈ Con(F(I(L))), so it is preserved by the polynomial
function g.) Hence, we have

type 5: ga(x, y) = (a ∨ x) ∧ y for any a ∈ F(I(L)).
An example in [13] shows that a function of type 5 is not, in general, a com-

position of functions of types 1-4. Now we present an example which shows that
the above five types are still insufficient to generate the clone of all compatible
functions.

Example 4.1. Let L be the lattice of all finite subsets of an infinite set S (ordered
by the set-theoretical inclusion). It is not difficult to check that the binary function
f(X, Y ) = X\Y (the set-theoretical difference) is compatible since it is a restriction
of a compatible function of P(S) (the Boolean lattice of all subsets of S) and
distributive lattices have the congruence extension property.

Note that there is no need to consider the functions of types 4 and 5. Since L has
the least element, all almost principal filters are principal, and also F(I(L)) = I(L).
Consequently, the projections on almost principal filters are polynomials and every
function ga of type 5 with a ∈ I(L) is a composition of a polynomial and a function
of type 3, namely ga(x, y) = (a ∧ y) ∨ (x ∧ y).

For contradiction, suppose that f is a composition of polynomials, interval com-
plementations and almost principal ideal projections. This composition can con-
tain only finitely many interval complementations. Let us denote the corresponding
Boolean intervals by [u1, v1], . . . , [un, vn] and choose Y ∈ L with vi ⊆ Y for every
i. Now consider the following binary relation ρ on L:

(U, V ) ∈ ρ iff (U \ Y ) ⊆ (V \ Y ).

It is not difficult to check that
(i) every polynomial preserves ρ;
(ii) every almost principal ideal projection preserves ρ;
(iii) complementation on every [ui, vi] preserves ρ.
(It can easily be verified that the almost principal ideals are all ideals of the

form {X ∈ L | X ⊆ T} for T ⊆ S, so every almost principal ideal projection
can be expressed as g(X) = X ∩ T .) On the other hand, choose arbitrarily
y ∈ S \ Y and set U = {y}, V1 = ∅, V2 = {y}. Then (U,U) ∈ ρ, (V1, V2) ∈ ρ,
but (f(U, V1), f(U, V2)) = ({y}, ∅) /∈ ρ, which shows that f does not preserve ρ.
This contradicts the fact that f is a composition of polynomials, interval comple-
mentations and almost principal ideal projections.

Inspired by the above example, we introduce three more types of compatible
functions:

type 6: d[a,b](x, y) = c[a,b](y) ∧ x for any Boolean interval [a, b] in I(L);
type 7: d[a,b](x, y) = c[a,b](y) ∨ x for any Boolean interval [a, b] in F(L);
type 8: e[a,b](x, y, z) = (c[a,b](z)∨x)∧y for any Boolean interval [a, b] in F(I(L)).
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Lemma 4.2. The functions of types 6, 7, 8 can be restricted to L and the restric-
tions are compatible.

Proof. Since L (as a sublattice) is an ideal of I(L), we have d[a,b](x, y) ∈ L for
every x, y ∈ L. Similarly, L is a filter of F(L), so d[a,b](x, y) ∈ L for every x, y ∈ L.
Further, x ∧ y ≤ e[a,b](x, y, z) ≤ y, so the convexity of L yields e[a,b](x, y, z) ∈ L
for every x, y, z ∈ L. Hence, L is closed under all functions of types 6, 7, 8. The
compatibility of restrictions follows from the congruence extension property and
the fact that d[a,b], d[a,b] and e[a,b] are compatible functions on I(L), F(L) and
F(I(L)), respectively. �

A typical example of a function of type 6 is given in Example 4.1. More details
about the existence and structure of the new functions will be given in Section 6.
Especially, we will give an alternative definition of functions of types 6 and 7, which
does not refer to the lattice structure of I(L) and F(L). Further, we will prove
that every function of type 8 is a composition of functions of types 1-7. So, the
presence of the type 8 in our list is in fact superfluous. Nevertheless, this type is
useful in proving the completeness result in the next section.

5. The completeness result

In this section we prove that every compatible function on a distributive lattice
is a composition of functions of types 1-8. For the whole section we shall assume
that f : Ln → L is a compatible function on an arbitrary (possibly unbounded)
distributive lattice L. By Theorem 3.7 we can extend f to a compatible function
f : F(I(L))n → F(I(L)). Since the lattice F(I(L)) is bounded, we can express
g = f in the form presented in Theorem 2.3. The symbols Kab and cJab

below, as
well as the symbols such as a−1(1) or b−1(0), will refer to this representation.

Lemma 5.1. If a−1(1) 6= ∅ and b−1(0) 6= ∅ then Kab�L is a composition of a func-
tion of type 8 and lattice polynomials.

Proof. Obvious. �

The statement of Lemma 5.1 is not true if a−1(1) = ∅ or b−1(0) = ∅. In such
case the function Kab cannot be restricted to L. To overcome this difficulty we need
one more trick. Define the unary function f− : L → L by f−(x) = x∧ f(x, . . . , x).
Using Lemma 3.4 with I1 = · · · = In = L we obtain that f−(x) = xJ , where
J = {x ∈ L | x ≤ f(x, . . . , x)} is an almost principal ideal of L. Hence, f− is a
compatible function on L of type 3. Similarly, the function f+(x) = x∨f(x, . . . , x)
is of type 4.

Lemma 5.2. For every x1, . . . , xn ∈ L,

f−(
n∧

i=1

xi) ≤ f(x) ≤ f+(
n∨

i=1

xi).
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Proof. We prove the first inequality. Denote y =
∧n

i=1 xi and suppose for con-
tradiction that f−(y) 6≤ f(x). Then f(x) ∈ P and f−(y) /∈ P for some prime
ideal P on L. Since f−(y) = y ∧ f(y, . . . , y), we have y /∈ P and f(y, . . . , y) /∈ P .
As y ≤ xi for every i, we have xi /∈ P , hence (y, xi) ∈ θP . On the other hand,
(f(y, . . . , y), f(x1, . . . , xn)) /∈ θP , which contradicts the compatibility of f . The
second inequality is analogous. �

By the distributivity, Theorem 2.3 and Lemma 5.2 we obtain that, for every
x ∈ Ln,

f(x) =
∨

a∈{0,1}n

C∗
a(x),

where
C∗

a(x) =
∧

b∈{0,1}n,b≥a

K∗
ab(x),

and

K∗
ab(x) = (Kab(x) ∨ f−(

n∧
i=1

xi)) ∧ f+(
n∨

i=1

xi).

Especially, f−(
∧n

i=1 xi) ≤ K∗
ab(x) ≤ f+(

∨n
i=1 xi). The convexity of L in F(I(L))

implies that K∗
ab(x) ∈ L for every x ∈ Ln, so K∗

ab can be restricted to L.

Lemma 5.3. For every compatible function h : Ln → L on a bounded distributive
lattice L and every x ∈ L, the following equalities hold:

h(0, . . . , 0) ∨ x = h(x, . . . , x) ∨ x;

h(1, . . . , 1) ∧ x = h(x, . . . , x) ∧ x.

Proof. For contradiction, suppose that h(0, . . . , 0)∨x 6= h(x, . . . , x)∨x. Then there
is a prime ideal P on L such that exactly one of h(0, . . . , 0)∨ x and h(x, . . . , x)∨ x
is in P . In both possible cases, (0, x) ∈ θP , (h(0, . . . , 0), h(x, . . . , x)) /∈ θP , which
contradicts the compatibility of h. The proof of the second equality is similar. �

Lemma 5.4. For every a, b ∈ {0, 1}n, a ≤ b, the restriction K∗
ab � L is a composi-

tion of functions of types 1-8.

Proof. If a−1(1) 6= ∅ and b−1(0) 6= ∅, the statement follows from Lemma 5.1. For
the remaining cases we distinguish the following five situations.

I. Let a−1(1) = ∅, b−1(0) 6= ∅, b 6= a. Then

K∗
ab(x) = ((cJab

(
∨

i∈b−1(1)

xi) ∨
∨

i∈b−1(0)

xi) ∧ f+(
n∨

i=1

xi)) ∨ f−(
n∧

i=1

xi),

hence

K∗
ab(x) = eJab

(
∨

i∈b−1(0)

xi, f
+(

n∨
i=1

xi),
∨

i∈b−1(1)

xi) ∨ f−(
n∧

i=1

xi),

which is clearly a composition of functions 1-8.
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II. Let a−1(1) = ∅, b = a. Then

K∗
ab(x) = ((f(a) ∨

n∨
i=1

xi) ∧ f+(
n∨

i=1

xi)) ∨ f−(
n∧

i=1

xi).

By Lemma 5.3, f(a)∨
∨n

i=1 xi is equal to f+(
∨n

i=1 xi), hence K∗
ab(x) = f+(

∨n
i=1 xi),

which is a composition of a function of type 4 and the lattice join (type 1).
III. Let b−1(0) = ∅, a−1(1) 6= ∅, b 6= a. Then

K∗
ab(x) = ((cJab

(
∨

i∈a−1(0)

xi) ∧
∧

i∈a−1(1)

xi) ∨ f−(
n∧

i=1

xi)) ∧ f+(
n∨

i=1

xi),

hence

K∗
ab(x) = eJab

(f−(
n∨

i=1

xi),
∧

i∈a−1(1)

xi,
∨

i∈a−1(0)

xi) ∧ f+(
n∨

i=1

xi),

which is clearly a composition of functions 1-8.
IV. Let b−1(0) = ∅, b = a. Then

K∗
ab(x) = ((f(a) ∧

n∧
i=1

xi) ∨ f−(
n∧

i=1

xi)) ∧ f+(
n∨

i=1

xi).

By Lemma 5.3, f(a)∧
∧n

i=1 xi is equal to f−(
∧n

i=1 xi), hence K∗
ab(x) = f−(

∧n
i=1 xi),

which is a composition of a function of type 3 and the lattice meet (type 1).
V. Finally, let a−1(1) = b−1(0) = ∅. Then

K∗
ab(x) = (cJab

(
n∨

i=1

xi) ∨ f−(
n∧

i=1

xi)) ∧ f+(
n∨

i=1

xi),

which is equal to

eJab
(f−(

n∧
i=1

xi), f+(
n∨

i=1

xi),
n∨

i=1

xi).

This concludes the proof. �

Hence we have proved the following result.

Theorem 5.5. Every compatible function on a distributive lattice is a composition
of functions of types 1-8.

Now we can easily prove the corresponding result for local polynomials. It
generalizes the corresponding result in the unary case proved by G. Grätzer and
E.T. Schmidt [7]. Recall that by [2], a function on a distributive lattice is a local
polynomial if and only if it is compatible and isotone.

Theorem 5.6. Every isotone compatible function on a distributive lattice is a
composition of functions of types 1,3,4 and 5.
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Proof. Assume that f : Ln → L is compatible and isotone. It is easy to see that
its compatible extension f : F(I(L))n → F(I(L)) is also isotone. All Boolean
intervals, used for expressing f as a composition of functions of types 0-8, have the
form Jab = [f(a) ∧ f(b), f(a)], where a, b ∈ {0, 1}n, a ≤ b. Since f is isotone, every
such interval is trivial, i.e. one-element. Therefore, the functions of types 2,6,7 and
8 appearing in the decomposition of f only use trivial Boolean intervals. Under
such condition, every function of type 2 is constant. Further, every function of type
6 takes the form da(x, y) = a ∧ x for some a ∈ I(L), which is a projection on the
almost principal ideal a, i.e. a function of type 3 (composed with the projection
p(x, y) = x, to be precise). Similarly the functions of types 7 and 8 reduce to the
types 4 and 5, respectively. �

6. Functions of types 6,7,8

In this section we provide more information about functions of types 6,7 and
8. Especially, we prove that every function of type 8 is a composition of functions
of types 1-7. We start with one observation that can be proved by elementary
calculations (using, for instance, the set-theoretical representation of L).

Lemma 6.1. Let [a, b] be a Boolean interval in a distributive lattice L. Then, for
every m ∈ L, the interval [a ∧m, b ∧m] is Boolean and

c[a,b](y) ∧m = c[a∧m,b∧m](y).

The following lemma is due to G. Grätzer and E.T. Schmidt (see [7]).

Lemma 6.2. For every J,K ∈ I(L) and every x, y ∈ L, the following hold:
(1) xJ∨K = xJ ∨ xK ;
(2) xJ∧K = xJ ∧ xK ;
(3) (x ∨ y)J = xJ ∨ yJ ;
(4) (x ∧ y)J = xJ ∧ yJ .

Now we show that Boolean intervals in I(L) are closely related to Boolean in-
tervals in L.

Lemma 6.3. For every J,K ∈ I(L), J ⊆ K, the following statements are equiva-
lent:

(1) The interval [J,K] in I(L) is Boolean.
(2) For every x ∈ L, the interval [xJ , xK ] in L is Boolean.

Further, if the above conditions are satisfied, then

d[J,K](x, y) = c[xJ ,xK ](y)

for every x, y ∈ L.

Proof. Since xJ = x∧J and xK = x∧K in I(L), the implication (1)=⇒(2) follows
from Lemma 6.1.
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Conversely, assume (2). Let M ∈ [J,K]. We set

N = {y ∈ K | ↓y ∩M ⊆ J} = {y ∈ K | yM ∈ J}.
Clearly, N is an ideal in L, J ⊆ N ⊆ K and we claim that N is almost principal.
Let x ∈ L. Then xM ∈ [xJ , xK ], so there is y ∈ [xJ , xK ] with xM ∧ y = xJ ,
xM ∨ y = xK . We claim that y = max N ∩ ↓x. Obviously, y ≤ x, so yM ≤ xM ,
hence yM = xM ∧ yM ≤ xM ∧ y = xJ , so y ∈ N . Suppose now that z ∈ N , z ≤ x.
Then zM ∈ J and z ∈ K, so z ≤ xK = xM ∨ y and hence z = (z ∧ xM ) ∨ (z ∧ y).
Since z∧xM ≤ zM ∈ J , we have z∧xM ≤ xJ ≤ y and therefore z ≤ y∨ (z∧y) = y.

Thus, N is almost principal. For every x ∈ M ∩ N we have x = xM ∈ J , so
M ∧N = J . For every x ∈ K we have x = xK = xM ∨xN ∈ M ∨N , so M ∨N = K.
Hence, N is the complement of M in [J,K].

The last statement also follows from Lemma 6.1. �

The above lemma gives an alternative definition of functions of type 6. This
definition is intrinsic in the sense that it does not refer to the lattice structure of
I(L). Of course, an analogous description is possible for functions of type 7. Now
we can investigate functions of type 8.

Lemma 6.4. Let [a, b] be a Boolean interval in the lattice F(I(L)) for a distributive
lattice L. Let m be an arbitrary element of L and define the functions h1, h2 and
h3 as follows:

h1(x, y, z) = e[a,b](x, y, z) ∧m;
h2(x, y, z) = e[a,b](x, y, z) ∨m;

h3(x, y) = e[a,b](x, y, m).
Then, for every x, y, z ∈ L,

e[a,b](x, y, z) = h1(x, y, z) ∨ (h2(x, y, z) ∧ h3(x, y)).

Proof. Let x, y, z ∈ L. Since c[a,b](m) is the complement of a ∨ (m ∧ b) in [a, b], we
have

a = c[a,b](m) ∧ (a ∨ (m ∧ b)) ≥ c[a,b](m) ∧ (m ∧ b) = c[a,b](m) ∧m,

which implies that

m ∧ c[a,b](m) ∧ y ≤ a ∧ y ≤ c[a,b](z) ∧ y ≤ e[a,b](x, y, z).

Further,
m ∧ x ∧ y ≤ x ∧ y ≤ e[a,b](x, y, z),

hence

m∧h3(x, y) = m∧(c[a,b](m)∨x)∧y = (m∧c[a,b](m)∧y)∨(m∧x∧y) ≤ e[a,b](x, y, z).

Similarly,

b = c[a,b](m) ∨ a ∨ (m ∧ b) = c[a,b](m) ∨ (m ∧ b) = (c[a,b](m) ∨m) ∧ b,

hence b ≤ c[a,b](m) ∨m and therefore

m ∨ h3(x, y) = (m ∨ c[a,b](m) ∨ x) ∧ (m ∨ y) ≥ (b ∨ x) ∧ y ≥ e[a,b](x, y, z).
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Now we obtain that
(h2(x, y, z) ∧ h3(x, y)) = (e[a,b](x, y, z) ∨m) ∧ h3(x, y) =
(e[a,b](x, y, z) ∧ h3(x, y)) ∨ (m ∧ h3(x, y)) ≤ e[a,b](x, y, z).

Obviously, h1(x, y, z) ≤ e[a,b](x, y, z), hence

h1(x, y, z) ∨ (h2(x, y, z) ∧ h3(x, y)) ≤ e[a,b](x, y, z).

The inverse inequality:

h1(x, y, z) ∨ (h2(x, y, z) ∧ h3(x, y)) = h2(x, y, z) ∧ (h1(x, y, z) ∨ h3(x, y)) =
h2(x, y, z) ∧ (e[a,b](x, y, z) ∨ h3(x, y)) ∧ (m ∨ h3(x, y)) ≥ e[a,b](x, y, z).

�

Theorem 6.5. Every function of type 8 on a distributive lattice is a composition
of functions of types 1-7.

Proof. It suffices to prove that the functions h1, h2 and h3 are compositions of
functions of types 1-7. This is clear for h3, which is of type 5 by its definition.
Using the distributivity we obtain that

h1(x, y, z) = ((c[a,b](z) ∧m) ∨ x) ∧ y ∧m;

h2(x, y, z) = ((c[a,b](z) ∨m) ∧ y) ∨ ((x ∧ y) ∨m).

By Lemma 6.1, (c[a,b](z) ∧ m) ∨ x = c[a∧m,b∧m](z) ∨ x. Since F(L) is an ideal
in F(I(L)) containing m (see Lemma 3.2 and the following comments) and since
a ∧m, b ∧m ≤ m in F(I(L)), we can regard [a ∧m, b ∧m] as an interval in F(L).
Hence c[a∧m,b∧m](z) ∨ x = d[a∧m,b∧m](x, z) is a function of type 7.

By the dual statement to Lemma 6.1, (c[a,b](z) ∨ m) ∧ y = c[a∨m,b∨m](z) ∧ y.
Since I(L) is a filter in F(I(L)) containing m, we can analogously as above regard
[a ∨m, b ∨m] as an interval in I(L). Hence c[a∨m,b∨m](z) ∧ y = d[a∨m,b∨m](y, z) is
a function of type 6.

Consequently, h1 and h2 are compositions of polynomials and functions of types
7 and 6, which concludes the proof. �
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