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Abstract. We prove that there exist a lattice whose congruence lattice is not

isomorphic to the congruence lattice of any lattice with m-permutable congru-

ences. Our proof also extends to a wider class of algebras with m-permutable
congruences. In order to do this we use and further develop the method in-

vented by F. Wehrung for solving Dilworth’s congruence lattice problem. To

minimize the cardinality of our construction, we use the free trees combinato-
rial principle of P. Růžička.

1. Introduction

The investigation of congruences is one of the central topics in universal algebra.
It is well known that every algebraic lattice is isomorphic to the congruence lat-
tice of some algebra. Much less is known about congruence lattices of algebras of
particular type. We do not know, which lattices are isomorphic to the congruence
lattices of the most common kinds of algebras, like groups, rings or lattices. In
the case of lattices, a longstanding conjecture of R. P. Dilworth is also referred to
as the Congruence Lattice Problem (CLP): Is every distributive algebraic lattice
isomorphic to the congruence lattice of some lattice? After more than 60 years of
effort (documented in [1](Appendix C) or [10]), the conjecture was finally disproved
by F. Wehrung in [12].

In the intensive research that eventually led to Wehrung’s solution, many other
related problems became interesting. One of them concerns the congruence lattices
of lattices (or more general algebras) with m-permutable congruences.

Problem 1.1. (See [12].) Prove that there exists a lattice K such that for ev-
ery integer m > 1 there is no lattice L with m-permutable congruences such that
ConK ∼= ConL.

In this paper we show that such a latticeK can be taken as the free algebra in any
variety (equational class) of bounded lattices containing the lattice M3 with at least
ℵ2 generators. The cardinality ℵ2 is the lowest possible, since we know that every
distributive algebraic lattice with at most ℵ1 compact elements is representable as a
congruence lattice of a lattice with permutable (that is, 2-permutable) congruences.
(See, for instance, [2].)

Our proof is an modification of Wehrung’s method for solving CLP. To achieve
the cardinality of ℵ2 we use Růžička’s theorem about the existence of free trees
from [8].
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It is worth mentioning that in the case m = 2 a stronger result is available. By
[9], there exists a lattice K such that ConK is not isomorphic to ConA for any
algebra A with permutable congruences. The example of such lattice is the same
as in the present paper (and in [7]), but the method of proof is different.

2. Basic concepts

We assume familiarity with fundamentals of lattice theory and universal algebra.
For all undefined concepts and unreferenced facts we refer to [1] and [5].

We do not distinguish between an algebra and its underlying set, hoping that no
confusion arises. For an algebra A let ConA denote the congruence lattice of A.
This lattice is always algebraic and its compact elements form a ∨-subsemilattice
of ConA, denoted ConcA. For x, y ∈ A let θ(x, y) denote the smallest congruence
containing the pair (x, y). The semilattice ConcA consists precisely of all finitely
generated congruences, i.e. congruences of the form θ(x1, y1)∨ · · · ∨ θ(xn, yn). The
smallest and the largest element of ConA (and of any other lattice in this paper)
will always be denoted by 0 and 1, respectively. The congruence 0 (the equality
relation) is considered as compact, so ConcA always has a smallest element.

If α ∈ ConA and B is a subalgebra of A, then the restriction of α to B is the
relation α ∩ B2 and will usually be denoted by α � B. Notice that it is always a
congruence of B.

Let m > 1 be an integer. The algebra A is called congruence m-permutable,
if α ◦m β = β ◦m α for every α, β ∈ ConA, where α ◦m β denotes the relational
product α ◦β ◦α ◦β . . . (m− 1 occurences of ◦). If A is congruence m-permutable,
then α ∨ β = α ◦m β for every α, β ∈ ConA.

Although our original motivation was to solve a problem for lattices, our proof
works in a more general situation. It is not necessary that A is actually a lattice.
We only need that A admits a compatible lattice structure in the following sense.

Definition 2.1. ([3]) A finitary function f : An → A on an algebra A is called
compatible (or congruence compatible) if, for any congruence θ ∈ ConA, (xi, yi) ∈
θ, i = 1, . . . , n, implies that (f(x1, . . . , xn), f(y1, . . . , yn)) ∈ θ.

For instance, the binary join operation ∨ is compatible if, for every θ ∈ ConA,

(1) (x, y) ∈ θ, and (u, v) ∈ θ imply (x ∨ u, y ∨ v) ∈ θ.

It is clear that every basic operation of A is compatible and, more generally, every
polynomial function of A is compatible. In general, however, there are compatible
functions that are not polynomial.

We say that A admits a compatible lattice structure, if there are compatible
functions ∨ and ∧ on A such that (A,∨,∧) is a lattice. This structure induces a
natural order relation ≤ on A.

Lemma 2.2. Let the algebra A admit a compatible lattice structure. Suppose that
1 ∈ ConcA. Then

(i) 1 = θ(u, v) for some u, v ∈ A, u ≤ v;
(ii) If A is congruence m-permutable and α ∨ β = 1 (α, β ∈ ConA), then there

exist z0, . . . , zm ∈ A such that v = z0 ≥ z1 ≥ · · · ≥ zm = u, (zk, zk+1) ∈ α
for all even k and (zk, zk+1) ∈ β for all odd k.



CONGRUENCE LATTICES OF LATTICES WITH m-PERMUTABLE CONGRUENCES 3

Proof. By our assumption, 1 = θ(x1, y1) ∨ · · · ∨ θ(xn, yn) for some xk, yk ∈ A (k =
1, . . . , n). Since A is a lattice, there are elements u, v ∈ A such that u ≤ xk ≤ v,
u ≤ yk ≤ v for every k. Since (xk, v) = (xk ∨u, xk ∨ v) and (v, yk) = (v ∨u, yk ∨u),
the compatibility of ∨ implies that (xk, v), (v, yk) ∈ θ(u, v), hence (xk, yk) ∈ θ(u, v)
for every k, and consequently, θ(u, v) = 1.

If α ∨ β = 1, then (v, u) ∈ α ∨ β, and the m-permutability yields that (v, u) ∈
α◦mβ. By the definition of the relational product, there are w0 = v, w1, . . . , wm = u
such that (wk, wk+1) ∈ α for every even k and (wk, wk+1) ∈ β for every odd k. We
set zk = (wk ∨ wk+1 ∨ · · · ∨ wm) ∧ v (k = 0, . . . ,m). For k even (wk, wk+1) ∈ α
implies that (zk, zk+1) = ((

∨m
i=k+1 wi ∨ wk) ∧ v, (

∨m
i=k+1 wi ∨ wk+1) ∧ v) ∈ α, and

similarly for k odd.
�

The lattice M3 depicted below will play an essential role in our considerations.
(Also the denotation of its elements is important.) This lattice generates the variety
(equational class) M3. The bounded members of M3 also form a variety provided
that we consider 0 and 1 as nullary basic operations. This variety will be denoted
by M01

3 .
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We use standard set-theoretic notation. We identify a natural number n with
the set {0, 1, . . . , n− 1}. The least infinite ordinal is denoted ω. If Ω is a set then
[Ω]n denotes the family of all n-element subsets of Ω, while [Ω]<ω stands for the
family of all finite subsets of Ω.

If f : A→ B is a map, then we define its kernel as the relation Ker f = {(x, y) ∈
A2 | f(x) = f(y)}. If f is a homomorphism of algebras, then Ker f ∈ ConA.

3. Free trees

Let k be a positive integer and X a set. For a map Φ : [Ω]k−1 → [Ω]<ω we say
that a k-element set B ⊆ Ω is free with respect to Φ if b /∈ Φ(B \ {b}) for all b ∈ B.

The following statement of infinite combinatorics is a one direction of a theorem
due to K. Kuratowski [4]

Theorem 3.1. Let Ω be a set of cardinality at least ℵk−1. Then for every map
Φ : [Ω]k−1 → [Ω]<ω there is a k-element set free set B ⊆ Ω.

The special case of this principle (for k = 3) has been used in several papers
([11], [7], [6] and others) to prove negative results concerning the representability
of distributive algebraic lattices as congruence lattices of algebras. The general
Kuratowski’s theorem played an important role in recent solution of Congruence
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Lattice Problem by Wehrung ([12]). For our purpose we need a modification of this
principle, recently discovered by Růžička ([8]).

Let m,n, k be natural numbers with k > 0, m ≤ n and let g : {m, . . . , n−1} → k
be a map. We denote

(2) Tn,k(g) = {f : n→ k | f extends g}.

If 0 < m and i ∈ {0, . . . , k − 1} then we also use

(3) Tn,k(g, i) = {f ∈ Tn,k(g) | f(m− 1) = i},

(4) Tn,k(g,¬i) = {f ∈ Tn,k(g) | f(m− 1) 6= i},

Definition 3.2. ([8]) Let Ω be a set and let Φ : [Ω]<ω → [Ω]<ω be a map. Let k
and n be natural numbers with k > 0. We say that a family T = (α(f) | f : n→ k)
with all α(f) ∈ Ω is a free k-tree of height n with respect to Φ if

(5) {α(f) | f ∈ Tn,k(g, i)} ∩ Φ({α(f) | f ∈ Tn,k(g,¬i)}) = ∅,

for every 0 < m ≤ n, every g : {m, . . . , n− 1} → k and every i ∈ k.

Theorem 3.3. ([8]) Let Ω be a set of cardinality at least ℵk−1. Then for every
map Φ : [Ω]<ω → [Ω]<ω and every natural n there is a free k-tree of height n with
respect to Φ.

Notice that free k-trees of height 1 are just the free sets, so 3.3 generalizes 3.1

4. Main result

Throughout this section we fix a positive integer m. Let F be the free algebra
(lattice) in the variety M01

3 with X as the set of free generators. We assume that
|X| ≥ ℵ2 and choose a special denotation for the elements of X, depending on m,
namely X = {xξ

k | k ∈ {1, ..2m}, ξ ∈ Ω}, where Ω is some set of cardinality at least
ℵ2. Formally we set xξ

0 = 0, xξ
2m+1 = 1 for every ξ ∈ Ω.

Now we define the congruences aξ
i ∈ Conc F (i = 0, 1) as

aξ
0 = θ(xξ

0, x
ξ
1) ∨ θ(x

ξ
2, x

ξ
3) ∨ · · · ∨ θ(x

ξ
2m, x

ξ
2m+1);

aξ
1 = θ(xξ

1, x
ξ
2) ∨ θ(x

ξ
3, x

ξ
4) ∨ · · · ∨ θ(x

ξ
2m−1, x

ξ
2m).

Clearly, aξ
0 ∨ aξ

1 = 1 for every ξ, since this congruence collapses 0 and 1.
For Y ⊆ Ω let F (Y ) denote the subalgebra of F generated by all elements xξ

k,
ξ ∈ Y , k ∈ {0, . . . , 2m+ 1}.

Every ψ ∈ Conc F is generated by a finite subset of F 2 and every element of
F belongs to F (Z) for some finite set Z ⊆ Ω. Hence, for every ψ ∈ Conc F there
exist a finite set Y ⊆ Ω such that ψ is generated by ψ � F (Y ). We pick such a set
for every ψ, call it the support, and denote it by supp(ψ). (We do not require any
kind of mimimality, just the finiteness.) The importance of the support lies in the
following, rather trivial, observation, which will be frequently used in the sequel.

Lemma 4.1. Let ψ ∈ Conc F , ϕ ∈ ConF , supp(ψ) ⊆ Y ⊆ Ω. Then ψ ⊆ ϕ if and
only if ψ � F (Y ) ⊆ ϕ � F (Y ).
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Further, for every n = 0, . . . , 2m, let fn : F → {0, 1} be the unique bounded
lattice homomorphism determined by the condition

fn(xξ
i ) =

{
0 if i ∈ {1, . . . , 2m− n}
1 if i ∈ {2m− n+ 1, . . . , 2m}

We have the following easy assertion.

Lemma 4.2. Let ξ ∈ Ω, n ∈ {0, . . . , 2m}, i ∈ {0, 1}. Suppose that p is a homo-
morphism F → {0, 1} which coincides with fn on the set {xξ

k | k = 1, . . . , 2m}.
Then aξ

i ⊆ Ker p iff i+ n is odd.

Proof. If n is odd then p(xξ
2k) = p(xξ

2k+1) for every k = 0, . . . ,m, hence (xξ
2k, x

ξ
2k+1)

belongs to Ker p and therefore aξ
0 ⊆ Ker p. On the other hand, p(xξ

2m−n) 6=
p(xξ

2m−n+1), hence (xξ
2m−n, x

ξ
2m−n+1) ∈ aξ

1 \ Ker p, showing aξ
1 6⊆ Ker p. The

proof for n even is similar. �

The next assertion contains the substantial part of our proof. Let ε be the parity
function, i.e. ε(k) = 0 for k even and ε(k) = 1 for j odd.

Lemma 4.3. Let A be an algebra which admits a congruence preserving semilattice
operation ∨ (which induces the order relation ≤). Suppose that µ : ConcA →
Conc F is an isomorphism. Let u, v ∈ A be such that for every ξ ∈ Ω there are
elements u = zξ

m ≤ zξ
m−1 ≤ · · · ≤ zξ

0 = v such that

(6) µθ(zξ
k, z

ξ
k+1) ⊆ aξ

ε(k)

for every k = 0, . . . ,m− 1. Then

(7) µθ(v, u) ⊆ Ker fm.

Proof. If Y is a finite subset of Ω and k ∈ {0, . . . ,m− 1}, then clearly

(8) θ

 ∨
ξ∈Y

zξ
k,

∨
ξ∈Y

zξ
k+1

 ⊆
∨
ξ∈Y

θ(zξ
k, z

ξ
k+1).

From (6) we obtain

(9) µθ

 ∨
ξ∈Y

zξ
k,

∨
ξ∈Y

zξ
k+1

 ⊆
∨
ξ∈Y

aξ
ε(k)

for every k = 0, . . . ,m− 1.
For Y ⊆ Ω let S(Y ) be the ∨-subsemilattice of A generated by all elements zξ

k

with ξ ∈ Y , 0 ≤ k ≤ m. Notice that S(Y ) is finite whenever Y is finite.
Now we define a map Φ : [Ω]<ω → [Ω]<ω by

(10) Φ(Y ) = Y ∪
⋃
{supp(µ(θ(x1, y1) ∨ · · · ∨ θ(xl, yl))) | l ∈ ω, xi, yi ∈ S(Y )}.

Hence, we take all compact congruences on A generated by elements of S(Y )
(there are finitely many of them) and unite the supports of their µ-images with Y .

Since |Ω| ≥ ℵ2, by 3.3 there exists a free 3-tree T = {α(f) | f : m → 3} of
height m with respect to Φ.

Note that the inclusion Y ⊆ Φ(Y ) ensures the injectivity of α. Indeed, let
f1, f2 : m → 3 be different. Let j = max{k ∈ m | f1(k) 6= f2(k)} and let g be
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the restriction of f1 (and f2) to {j + 1, . . . ,m}. Then (5) for this g implies that
α(f1) 6= α(f2).

Our proof will be completed by the following claim:
Claim. Let j ∈ {0, . . . ,m}, g : {j, . . . ,m − 1} → {0, 1} and n ∈ {j, j + 1, . . . ,

2m − j}. Let t : F → {0, 1} be a homomorphism such that t(xα(f)
k ) = fn(xα(f)

k )
for every f ∈ Tm,3(g) and every k = 1, . . . , 2m. Then

(11) µθ
(
v,

∨
{zα(f)

j | f ∈ Tm,2(g)}
)
⊆ Ker t.

Indeed, for j = m (which means that g is the empty map), n = m and t = fm

we have zα(f)
m = u for every f , so the above claim says that µθ(v, u) ⊆ Ker fm.

It remains to prove the Claim. We proceed by induction on j. The statement is
trivial for j = 0, since zξ

0 = v for every ξ ∈ Ω and θ(v, v) = 0.
Suppose now that j, g, n, t satisfy the assumptions of the claim, 0 < j. Denote

(12) x0 =
∨
{zα(f)

j | f ∈ Tm,2(g, 0)};

(13) x1 =
∨
{zα(f)

j | f ∈ Tm,2(g, 1)}.

Choose any h ∈ Tm,3(g, 2) and define elements u0,u1 ∈ Conc F as follows.

(14) u0 = µ
(∨ {

θ(x0 ∨ zα(h)
l , x0 ∨ zα(h)

l+1 ) | 0 ≤ l < m, l is even
})

;

(15) u1 = µ
(∨ {

θ(x1 ∨ zα(h)
l , x1 ∨ zα(h)

l+1 ) | 0 < l < m, l is odd
})

.

The construction of u0 and u1 comes from the “Erosion Lemma” of [12], which
plays a central role in Wehrung’s proof. In the next few lines we repeat (for the
convenience of the reader) Wehrung’s arguments showing the essential facts about
u0 and u1.

Since x0 ∨ zα(h)
k ∈ S(Y ), where Y = {α(f) | f ∈ Tm,3(g,¬1)}, we obtain that

supp(u0) ⊆ Φ({α(f) | f ∈ Tm,3(g,¬1)}). The freeness of the tree T implies that

(16) supp(u0) ∩ {α(f) | f ∈ Tm,3(g, 1)} = ∅.

For similar reasons,

(17) supp(u1) ∩ {α(f) | f ∈ Tm,3(g, 0)} = ∅.

Further, µθ(zα(h)
k , z

α(h)
k+1 ) ⊆ a

α(h)
0 for every even k, which implies that µθ(x0 ∨

z
α(h)
k , x0 ∨ zα(h)

k+1 ) ⊆ a
α(h)
0 . Consequently,

(18) u0 ⊆ a
α(h)
0 , and similarly, u1 ⊆ a

α(h)
1 .

The compatibility of ∨ implies that

(19) θ(x0 ∨ zα(h)
k , x0 ∨ zα(h)

k+1 ) ⊇ θ(x0 ∨ x1 ∨ zα(h)
k , x0 ∨ x1 ∨ zα(h)

k+1 )

and also

(20) θ(x1 ∨ zα(h)
k , x1 ∨ zα(h)

k+1 ) ⊇ θ(x0 ∨ x1 ∨ zα(h)
k , x0 ∨ x1 ∨ zα(h)

k+1 ),
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for every k. From the definition of u0, u1 we obtain that

(21) u0 ∨ u1 ⊇
m−1∨
k=0

µθ(x0 ∨ x1 ∨ zα(h)
k , x0 ∨ x1 ∨ zα(h)

k+1 ) ⊇

⊇ µθ(x0 ∨ x1 ∨ zα(h)
0 , x0 ∨ x1 ∨ zα(h)

m ) = µθ(v, x0 ∨ x1).

Now we define a special homomorphism r : F → M3. Since F is free, it is
sufficient to give its value on the free generators of F . The rules are as follows.

(R1) r(xα(f)
2m−n+1) = a for every f ∈ Tm,3(g, 0);

(R2) r(xα(f)
2m−n) = b for every f ∈ Tm,3(g, 1);

(R3) r(xα(h)
2m−n) = c if j is even and r(xα(h)

2m−n+1) = c if j is odd;
(R4) r(xξ

k) = t(xξ
k) in all other cases.

The values of t, r and the functions r1, . . . , r4 (which will appear later) are
displayed on the following table.

Tm,3(g, 0) Tm,3(g, 1) h for even j h for odd j

t 0 . . . 00

n︷ ︸︸ ︷
11 . . . 1 0 . . . 00

n︷ ︸︸ ︷
11 . . . 1 0 . . . 00

n︷ ︸︸ ︷
11 . . . 1 0 . . . 00

n︷ ︸︸ ︷
11 . . . 1

r 0 . . . 00a1 . . . 1 0 . . . 0b11 . . . 1 0 . . . 0c11 . . . 1 0 . . . 00c1 . . . 1
r1 0 . . . 0001 . . . 1 any 0 . . . 0111 . . . 1 0 . . . 0011 . . . 1
r2 0 . . . 0011 . . . 1 any 0 . . . 0011 . . . 1 0 . . . 0001 . . . 1
r3 any 0 . . . 0011 . . . 1 0 . . . 0111 . . . 1 0 . . . 0011 . . . 1
r4 any 0 . . . 0111 . . . 1 0 . . . 0011 . . . 1 0 . . . 0001 . . . 1

Each entry represents the values of a particular function in xξ
1, . . . , x

ξ
2m, where ξ

is specified in the first line. (For instance, Tm,3(g, 0) means “every ξ = α(f) with
f ∈ Tm,3(g, 0).”)

Let p : {a, b, 0, 1} → {0, 1} be the lattice homomorphism defined on a sublattice
of M3 by p(0) = p(b) = 0, p(a) = p(1) = 1. It is easy to check that

(22) pr � F (Ω \ {α(h)}) = t � F (Ω \ {α(h)}).
This implies that

(23) Ker t � F (Ω \ {α(h)}) ⊇ Ker r � F (Ω \ {α(h)}).
We wish to prove that µθ(x0 ∨ x1, v) ⊆ Ker t. Assume for contradiction that

µθ(x0 ∨ x1, v) 6⊆ Ker t. Since x0, x1, v ∈ S({α(f) | f ∈ Tm,3(g,¬2)}), we have
suppµθ(x0 ∨ x1, v) ⊆ Φ({α(f) | f ∈ Tm,3(g,¬2)}. The freeness of T implies that
α(h) /∈ supp(µθ(x0 ∨ x1, v), by Lemma 4.1 we obtain that

(24) µθ(x0 ∨ x1, v) � F (Ω \ {α(h)}) 6⊆ Ker t � F (Ω \ {α(h)}).
Then also

(25) µθ(x0 ∨ x1, v) � F (Ω \ {α(h)}) 6⊆ Ker r � F (Ω \ {α(h)}),
hence µθ(x0 ∨ x1, v) 6⊆ Ker r, which implies by (21) that u0 ∨ u1 6⊆ Ker r. Thus,
u0 6⊆ Ker r or u1 6⊆ Ker r. We show that both cases lead to a contradiction.

Case A. Let u0 6⊆ Ker r. Denote U = Ω \ {α(f) | f ∈ Tm,3(g, 1)}. By (16),
supp(u0) ⊆ U , hence

(26) u0 � F (U) 6⊆ Ker r � F (U).
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The restriction r � F (U) is a homomorphism F (U) → {0, 1, a, c} ⊆ M3. There
are projections p1, p2 : {0, 1, a, c} → {0, 1} defined by p1(a) = p1(0) = 0, p1(c) =
p1(1) = 1 and p2(a) = p2(1) = 1, p2(c) = p2(0) = 0. Let ri : F → {0, 1} (i = 1, 2)
be any homomorphism satisfying ri(x

ξ
k) = pi(r(x

ξ
k)) for every k and every ξ ∈ U .

(Choose ri(x
ξ
k) for ξ /∈ U arbitrarily.) Then ri � F (U) = pir � F (U) (i = 1, 2).

Since Ker p1 ∩Ker p2 = 0 (the smallest congruence of {0, 1, a, c}), we obtain that

(27) Ker r � F (U) = Ker r1 � F (U) ∩Ker r2 � F (U).

This leads to two subcases: u0 6⊆ Ker r1 or u0 6⊆ Ker r2. The subcases are very
similar, so we deal with them simultaneously.

Let g+ be the extension of g to {j − 1, . . . ,m − 1} by setting g+(j − 1) = 0.
Denote A0 = Tm,2(g+) = Tm,2(g, 0). Since t coincides with fn on the set {xα(f)

k |
f ∈ Tm,3(g, 0) = Tm,3(g+)}, the homomorphism r1 coincides with fn−1 on this set.
The induction hypothesis for j − 1, g+, n− 1 and r1 yields that

(28) µθ

v, ∨
f∈A0

z
α(f)
j−1

 ⊆ Ker r1.

Similarly, r2 coincides on the same set with fn, hence

(29) µθ

v, ∨
f∈A0

z
α(f)
j−1

 ⊆ Ker r2.

Further, x0 ≤ x0 ∨ zα(h)
k ≤ v for every k implies that u0 ⊆ µθ(v, x0). Then

(30) u0 ⊆ µθ

 ∨
f∈A0

z
α(f)
j−1 ,

∨
f∈A0

z
α(f)
j

 ∨ µθ

v, ∨
f∈A0

z
α(f)
j−1

 .

From (9) we obtain

(31) u0 ⊆
∨

f∈A0

a
α(f)
ε(j−1) ∨ µθ

v, ∨
f∈A0

z
α(f)
j−1

 .

Now (28) and (29) together with (31) imply that

(32) if u0 6⊆ Ker ri then a
α(f)
ε(j−1) 6⊆ Ker ri

for some f ∈ A0 (i ∈ {1, 2}).
On the other hand, u0 ⊆ a

α(h)
0 implies that, for i ∈ {1, 2},

(33) if u0 6⊆ Ker ri then a
α(h)
0 6⊆ Ker ri

Now we argue that (32) and (33) are incompatible. By Lemma 4.2, the satisfac-
tion of a

α(f)
ε(j−1) * Ker ri and a

α(h)
0 * Ker ri can be easily checked by looking at the

values ri(x
α(f)
k ) and ri(x

α(h)
k ) (k = 1, . . . , 2m). The results of this checking depend

on the parity of j and n. The function r1 coincides with fn−1 on {zα(f)
k | k =

1, . . . , 2m} (for any f ∈ A0) and with fn+ε(j−1) on {zα(h)
k | k = 1, . . . , 2m}. In the

case that u0 * Ker r1 we obtain that (32) holds iff j − 1 + n− 1 is odd, while (33)
holds iff 0+n+j−1 is odd. Clearly, these requirements are incompatible. Similarly,
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the function r2 coincides with fn on {zα(f)
k | k = 1, . . . , 2m} (for any f ∈ A0) and

with fn−ε(j) on {zα(h)
k | k = 1, . . . , 2m}. Hence, in the case u0 * Ker r2 we have

that (32) holds iff j−1+n is odd, while (33) requires 0+n−j odd, a contradiction.
Case B. Let u1 6⊆ Ker r. Denote U = Ω \ {α(f) | f ∈ Tm,3(g, 0)}. By (17),

supp(u1) ⊆ U , hence

(34) u1 � F (U) 6⊆ Ker r � F (U).

The restriction r � F (U) is a homomorphism F (U) → {0, 1, b, c} ⊆ M3. We
consider the projections p3, p4 : {0, 1, b, c} → {0, 1}, defined by p3(b) = p3(0) = 0,
p3(c) = p3(1) = 1 and p4(b) = p4(1) = 1, p4(c) = p4(0) = 0. Let ri : F → {0, 1}
(i = 3, 4) be any homomorphism satisfying ri(x

ξ
k) = pi(r(x

ξ
k)) for every k and every

ξ ∈ U . (Choose ri(x
ξ
k) for ξ /∈ U arbitrarily.) Then ri � F (U) = pir � F (U)

(i = 3, 4). Since Ker p3 ∩ Ker p4 = 0 (the smallest congruence of {0, 1, b, c}), we
obtain that

(35) Ker r � F (U) = Ker r3 � F (U) ∩Ker r4 � F (U).

This leads to two subcases: u1 6⊆ Ker r3 or u1 6⊆ Ker r4. Their discussion is
similar to the Case A. We extend g to g+ by setting g+(j − 1) = 1 and denote
A1 = Tm,2(g+) = Tm,2(g, 1). Instead of (31) we have (by the same argument)

(36) u1 ⊆
∨

f∈A1

a
α(f)
ε(j−1) ∨ µθ

v, ∨
f∈A1

z
α(f)
j−1

 .

On the set {xα(f)
k | f ∈ Tm,3(g, 1) = Tm,3(g+)} the homomorphism r3 coincides

with fn and r4 with fn+1. The induction hypothesis yields that

(37) µθ

v, ∨
f∈A1

z
α(f)
j−1

 ⊆ Ker ri

(for i ∈ {3, 4}). Now (37) together with (36) imply that

(38) if u1 6⊆ Ker ri then a
α(f)
ε(j−1) 6⊆ Ker ri

for some f ∈ A1 (i ∈ {3, 4}).
On the other hand, u1 ⊆ a

α(h)
1 implies that, for i ∈ {3, 4},

(39) if u1 6⊆ Ker ri then a
α(h)
1 6⊆ Ker ri

Again we claim that (38) and (39) are incompatible. On the set {zα(h)
k | k =

1, . . . , 2m} the function r3 coincides with fn+ε(j−1) and r4 with fn−ε(j). In the case
u1 * Ker r3 the condition (38) implies that j − 1 + n is odd, while (39) requires
1 + n + j − 1 odd, which is impossible. Finally, if u1 * Ker r4, then (38) needs
j− 1+n+1 odd, while (39) needs 1+n− j odd. This contradiction completes the
proof. �

Now we can deduce our main results.

Theorem 4.4. Let L be an algebra with m-permutable congruences, which admits
a compatible lattice structure. Then Conc L is not isomorphic to Conc F . (And
consequently, ConL is not isomorphic to ConF .)
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Proof. For contradiction, suppose that µ : Conc L → Conc F is an isomorphism.
Since Conc F has a largest element, Conc L must have a largest element too, which
means that the largest congruence of L is compact. Then there are u, v ∈ L, u ≤ v,
such that θ(u, v) = 1 ∈ ConL.

For every ξ ∈ Ω we have µ−1(aξ
0)∨µ−1(aξ

1) = 1. Since L is m-permutable, by 2.2
there are u = zξ

m ≤ zξ
m−1 ≤ · · · ≤ zξ

0 = v such that (zξ
k, z

ξ
k+1) ∈ µ−1(aξ

ε(k)) for every
k. This clearly implies (6), so by 4.3, µθ(v, u) ⊆ Ker fm. This is a contradiction,
because Ker fm 6= 1. �

The above theorem applies to lattices, lattice ordered algebras, and other al-
gebras that admit a compatible lattice structure. However, it is easy to observe
that the meet operation in 2.2 has only been used to ensure that zk ≤ v. If there
is a largest element 1 with respect to the order induced by the join operation, it
can play the role of v and one semilattice operation is sufficient. We say that an
algebra A admits a compatible (∨, 1)-semilattice structure if there is 1 ∈ A and
a compatible binary operation ∨ on A such that (A,∨) is a semilattice with the
largest element 1.

Theorem 4.5. Let A be a an algebra with m-permutable congruences, which admits
a compatible (∨, 1)-semilattice structure. Then ConA is not isomorphic to ConF .

Proof. Suppose that µ : ConcA→ Conc F is an isomorphism. Again, ConcA must
have a largest element, which means that there are ui, vi ∈ A, i = 1, . . . , n, such
that

∨n
i=1 θ(ui, vi) = 1 ∈ ConA. We denote X = {u1, v1, . . . , un, vn}. Then clearly∨

{θ(1, x) | x ∈ X} = 1.
Now we modify the proof of 2.2. For every x ∈ X and every ξ ∈ Ω we have

(1, x) ∈ µ−1(aξ
0) ∨ µ−1(aξ

1) = 1. Since A is m-permutable, there are w0 =
1, w1, . . . , wm = x such that (wk, wk+1) ∈ µ−1(aξ

ε(k)) for every k. We set zk =

(wk ∨ wk+1 ∨ · · · ∨ wm) (k = 0, . . . ,m). Now (wk, wk+1) ∈ µ−1(aξ
ε(k)) implies that

(zk, zk+1) = (
∨m

i=k+1 wi ∨ wk,
∨m

i=k+1 wi ∨ wk+1) ∈ µ−1(aξ
ε(k)). From 4.3 we ob-

tain that µθ(1, x) ⊆ Ker fm. Then also µ(1) =
∨
{µθ(1, x) | x ∈ X} ⊆ Ker fm, a

contradiction. �

This result raises the following question.

Problem 4.6. Which algebras admit a compatible (∨, 1)-semilattice structure?

Another observation is that instead of F one can take the (sufficiently large) free
algebra in any variety containing M01

3 . Indeed, the existence of suitable homomor-
phisms F → M3 and F → {0, 1} was the only property of F needed for the proof.
Hence, F can be chosen locally finite. (As the variety M01

3 is finitely generated.)
Finally, let us remark that instead of M3 one can use the 5-element nonmodular

lattice N5 = {0, 1, a, b, c} with 0 < b < a < 1 and c the common complement of a
and b. (In this denotation, exactly the same proof works.) Hence, F can also be
taken as the free bounded lattice in the variety generated by N5 (with at least ℵ2

generators).
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[8] P. Růžička, Free trees and the optimal bound in Wehrung’s theorem, preprint.
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