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Local separation in distributive semilattices

Miroslav Ploščica

Abstract. We introduce the Local Separation Property (LSP) for distributive semilattices.
We show that LSP holds in many semilattices of the form Conc A, where A is a lattice.
On the other hand, we construct an abstract example of a distributive lattice without LSP.
Our research is connected with the well known open problem whether every distributive
algebraic lattice is isomorphic to the congruence lattice of some lattice.

1. Introduction

By a distributive semilattice we mean a join-semilattice having the smallest
element 0 and satisfying the following condition:

if x ≤ y ∨ z, then there exist y′ ≤ y, z′ ≤ z such that x = y′ ∨ z′.

The ideals of a distributive semilattice S form a distributive algebraic lattice Id(S)
and S is isomorphic to the semilattice of compact elements of Id(S) (under the
assignment x �→ ↓x = {y ∈ S | y ≤ x}). Also conversely, the compact elements
of every distributive algebraic lattice L form a distributive semilattice Lc and L is
isomorphic to Id(Lc).

For a lattice L let M(L) = {x ∈ L | x <
∧{y ∈ L | y > x}} denote the set of all

completely meet-irreducible elements. It is well known that in any algebraic lattice
every element is a meet of completely meet-irreducible elements.

For an algebra A let Con A denote the lattice of all congruences of A under
inclusion. This lattice is always algebraic and its compact elements (i.e. compact,
or finitely generated congruences) form a join-semilattice Conc A.

If A is a lattice, then Con A is distributive. It is not known if every distributive
algebraic lattice is isomorphic to Con A for some lattice A. This is a longstand-
ing open problem known as the Congruence Lattice Problem (CLP in short). The
equivalent semilattice formulation of CLP asks whether every distributive semilat-
tice is isomorphic to Conc A for some lattice A. We refer to [1] (appendix C) and
[8] for the survey on this problem.
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324 M. Ploščica Algebra univers.

One of the important directions in investigating CLP is connected with uniform
refinement properties. They are usually considered as additional requirements,
which distributive semilattices should satisfy in order to be isomorphic to Conc A

for a (particular kind of) lattice A. So far, none of them was able to solve the
problem, although they led to many interesting results. (See [8].)

In this paper we introduce a new uniform refinement property for distributive
semilattices, called the Local Separation Property (LSP). This property seems to be
considerably weaker than all other uniform refinement properties. Nevertheless, we
were able to construct a distributive semilattice without LSP. On the other hand,
we can prove that LSP holds in Conc A for a quite large class of lattices A. In fact,
we do not know whether there is a lattice A, for which Conc A does not satisfy
LSP.

2. Refinable decomposition systems

Definition 2.1. Let S be a distributive semilattice and e ∈ S. Let F = {(ai, bi) |
i∈I} be a system of pairs of elements of S. We say that F is a decomposition
system at e if ai ∨ bi = e for every i ∈ I. Such a decomposition system is called
uniformly refinable if there are compact elements cij for i, j ∈ I, i �= j such that

(i) cij ≤ ai, bj for every i, j ∈ I, i �= j;
(ii) cij ∨ aj ∨ bi = e for every i, j ∈ I, i �= j;
(iii) cik ≤ cij ∨ cjk for every i, j, k ∈ I, i �= j �= k �= i.

Following [7], we say that a distributive semilattice S has the weak uniform
refinement property (WURP) if every decomposition system in S (at every e ∈ S)
is uniformly refinable.

If S is a lattice (i.e. meets exist in S), then S has WURP. Indeed, it is easy to
see that the elements cij = ai ∧ bj have the required properties.

If the cardinality of S is at most ℵ1, then S has WURP. This is a difficult result,
which can be deduced from the results in [10] and [8].)

Now we present another important example of a uniformly refinable decomposi-
tion system. For any elements x, y of a lattice A let θ(x, y) denote the congruence
on A generated by the pair (x, y).

Theorem 2.2. Let S = Conc A for some lattice A. Let x, y ∈ A and let J denote
the interval [x ∧ y, x ∨ y]. For every z ∈ J let az = θ(x ∧ y, z), bz = θ(z, x ∨ y).
Then

F(x, y) = {(az, bz) | z ∈ J}
is a uniformly refinable decomposition system at e = θ(x, y).
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Proof. It is clear that az, bz ∈ S and az ∨ bz = e for every z ∈ J . For every u, v ∈ J

let cuv = θ(u ∧ v, u) = θ(v, u ∨ v). This is a compact congruence. (Notice that
cuv is the least congruence of A for which the congruence classes of u and v satisfy
[u] ≤ [v].) The condition 2.1(i) is obviously satisfied. Further, (x ∧ y, v) ∈ av

implies (x ∧ y, u ∧ v) ∈ av. Since (u ∧ v, u) ∈ cuv, (u, x ∨ y) ∈ bu, we obtain that
(x ∧ y, x ∨ y) ∈ cuv ∨ av ∨ bu, hence cuv ∨ av ∨ bu ≥ θ(x, y) and 2.1(ii) holds.

Now, let u, v, w be different elements of J . From (v ∧w, v) ∈ cvw we obtain that
(u ∧ v, u ∧ v ∧ w) ∈ cvw. Since (u ∧ v, u) ∈ cuv, we have (u ∧ v ∧ w, u) ∈ cuv ∨ cvw,
which implies (u∧w, u) ∈ cuv ∨ cvw. Hence, cuw ≤ cuv ∨ cvw and 2.1(iii) holds. �

The above construction could be generalized to the case when e is not principal,
due to the following result.

Theorem 2.3. Let S be a distributive semilattice, e1, . . . , en ∈ S. Let Fk =
{(ai, bi) | i ∈ Ik} be a uniformly refinable decomposition system at ek, k = 1, . . . , n.
Then

F1 × · · · × Fn = {(ai1 ∨ · · · ∨ ain , bi1 ∨ · · · ∨ bin) | (i1, . . . , in) ∈ I1 × · · · × In}
is a uniformly refinable decomposition system at e = e1 ∨ · · · ∨ en.

Proof. Obviously, F1 × · · · × Fn is a decomposition system at e. For every i, j ∈
I1 × · · · × In, i = (i1, . . . , in), j = (j1, . . . , jn) we denote ai = ai1 ∨ · · · ∨ ain ,
bj = bj1 ∨ · · · ∨ bjn and set cij = ci1j1 ∨ · · · ∨ cinjn . It is easy to check that the
conditions of Definition 2.1 are satisfied. �

Hence, semilattices of compact congruences of lattices contain large uniformly
refinable decomposition systems. On the other hand, it is not easy to construct a
decomposition system which is not uniformly refinable. However, such systems do
exist. The first such example has been constructed by F. Wehrung in [9]. A more
direct construction has been presented in [6]. Another important example is the
following result.

Theorem 2.4. (See [7].) Let F be the free lattice in any non-distributive variety
of lattices with at least ℵ2 generators. Then Conc F does not satisfy WURP.

Hence, non-refinable decomposition systems can occur in the semilattices of com-
pact congruences of lattices. This in particular means, that WURP cannot solve
the CLP. That is why we introduce the following essential weakening of WURP.
Instead of requiring the refinability for every decomposition system, we will just de-
mand the existence of “rich” decomposition systems. Recall that, for a distributive
semilattice S, M(Id(S)) denotes the set of all completely meet-irreducible elements
of the algebraic lattice Id(S), i.e. the set of all completely meet-irreducible ideals
of S.
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Definition 2.5. Let S be a distributive semilattice, e ∈ S, P ∈ M(Id(S)). We
say that S has the local separation property (LSP) at (e, P ) if there are uniformly
refinable decomposition systems F1, . . . ,Fn at e such that for every Q ∈ M(Id(S))
with e ∈ P ∨ Q (the join in Id(S)) there exists (a, b) ∈ ⋃n

i=1 Fi with a ∈ P , b ∈ Q.
We say that S has the LSP if it has the LSP at every (e, P ).

We use the term “separation”, because LSP is connected with the separating the
points of the space M(Id(S)) with a natural topology. (See [3].)

Lemma 2.6. Every distributive semilattice with WURP has LSP.

Proof. Let e ∈ S, P ∈ M(Id(S)). We set F = {(a, b) ∈ S2 | a ∨ b = e}. By WURP,
F is uniformly refinable. For every Q ∈ M(Id(S)), e ∈ P ∨Q implies that e ≤ a0∨b0

for some a0 ∈ P , b0 ∈ Q. Since S is distributive, e = a ∨ b for some a ≤ a0, b ≤ b0,
hence (a, b) ∈ F , a ∈ P , b ∈ Q. �

Lemma 2.7. Let S be a distributive semilattice, e1, . . . , en ∈ S, P ∈ M(Id(S)). If
S has LSP at every (ei, P ), then it has LSP at (e1 ∨ · · · ∨ en, P ).

Proof. Let e = e1 ∨ · · · ∨ en and assume that S has LSP at every (ei, P ). Thus,
for every i we have suitable uniformly refinable decomposition systems F i

1, . . .F i
ki

at ei. For every n-tuple s = (s1, . . . sn) with 1 ≤ si ≤ ki we have the uniformly
refinable decomposition system Fs = F1

s1
× · · · × Fn

kn
at e, by Theorem 2.3. We

claim that the collection of all Fs has the required property. Let Q ∈ M(Id(S)),
e ∈ P ∨ Q. Then ei ∈ P ∨ Q for every i, so ai ∈ P , bi ∈ Q for some (ai, bi) ∈ F i

si
.

Let s = (s1, . . . , sn), a = a1 ∨ · · · ∨ an, b = b1 ∨ · · · ∨ bn. Clearly, (a, b) ∈ Fs, a ∈ P ,
b ∈ Q. �

3. The variety M3

In this section we prove that LSP is strictly weaker than WURP. We show
that LSP holds in the semilattice Conc A for every algebra A in M3 (the variety
generated by the lattice M3) depicted in Figure 1, which, by Theorem 2.4, is not
the case for WURP.

We start our proof with a general observation.

Lemma 3.1. Let A be any algebra. The completely meet-irreducible ideals in
Conc A are exactly the sets of the form

Pα = {β ∈ Conc A | β ⊆ α},
where α is a congruence on A such that the quotient algebra A/α is subdirectly
irreducible.
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Figure 1

Proof. The ideal lattice of Conc A is isomorphic to Con A, so every ideal in Conc A

is equal to Pα for some α ∈ Con A. And obviously, α ∈ M(Con A) if and only if
A/α is subdirectly irreducible. �

By the Jónsson Lemma (see also [1], Corollary V.10), every subdirectly irre-
ducible algebra in M3 is a homomorphic image of a subalgebra of M3. It is therefore
easy to check that the variety M3 has (up to isomorphism) only two subdirectly
irreducible members: the lattice M3 and the 2-element chain C2 = {0, 1}.

Theorem 3.2. For every A ∈ M3, the distributive semilattice S = Conc A has
LSP.

Proof. Let e ∈ S and P ∈ M(IdS). We need to show that S has LSP at (e, P ).
By Lemma 2.7 we can assume that e = θ(x, y) (the smallest congruence containing
the pair (x, y)) for some x, y ∈ A. As θ(x, y) = θ(x ∧ y, x ∨ y), we can assume that
x ≤ y.

By Lemma 3.1, P = Pα for some α ∈ Con A such that A/α is isomorphic to C2

or M3. The restriction of α to the interval [x, y], denoted by α′, is a congruence
on the lattice [x, y] and the quotient [x, y]/α′ is a convex sublattice of C2 or M3.
Hence, it can be a 1-element lattice, C2, or M3. We discuss all three cases.

If [x, y]/α′ is a 1-element lattice, then e ⊆ α, hence e ∈ P and the decomposition
system F = {(e, 0)} has the required property.

Let [x, y]/α′ be isomorphic to M3. Then there exist z ∈ [x, y] such that both
[x, z]/α′′ and [z, y]/α′′′ (where α′′ and α′′′ are the restrictions of α to [x, z] and [z, y]
respectively) are isomorphic to C2. Let e1 = θ(x, z), e2 = θ(z, y). Then e = e1 ∨ e2

and by Lemma 2.7 it suffices to show that S has the LSP at (e1, P ) and (e2, P ),
which reduces our case to the following one.
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Let [x, y]/α′ be isomorphic to C2. For every z ∈ [x, y] let az = θ(x, z), bz =
θ(z, y). We claim that the systems

F1 = {(az, bz) | z ∈ [x, y]}, F2 = {(bz, az) | z ∈ [x, y]}
have the required properties. By Theorem 2.2, both F1 and F2 are uniformly
refinable decomposition systems at e.

Let Q ∈ M(Id(S)), e ∈ P ∨ Q. We have Q = Pβ for some β ∈ Con A such that
A/β is isomorphic to C2 or M3. Let β′ be the restriction of β to the interval, [x, y].
Similarly as above, we have three possibilities for [x, y]/β′.

I. If [x, y]/β′ is a 1-element lattice, then e ∈ Q, 0 ∈ P and (0, e) = (ax, bx) ∈ F1.
II. Let [x, y]/β′ be isomorphic to M3. Then β′ is the kernel of a surjective

homomorphism g : [x, y] → M3. Similarly, α′ is the kernel of a surjective homomor-
phism f : [x, y] → C2. Let us choose u, v, w ∈ [x, y] such that g(u) = a, g(v) = b,
g(w) = c. The homomorphism f must collapse at least two of u, v, w. Without
loss of generality, f(u) = f(v).

If f(u) = 0, then consider z = u∨ v. We have f(z) = 0 = f(x), hence (x, z) ∈ α,
and g(z) = 1 = g(y), hence (z, y) ∈ β. Consequently, az ∈ P , bz ∈ Q and
(az, bz) ∈ F1.

If f(u) = 1, then we consider z = u ∧ v. We have f(z) = 1 = f(y), g(z) = 0 =
g(x), hence (x, z) ∈ β, (z, y) ∈ α, which implies that bz ∈ P , az ∈ Q, and clearly
(bz, az) ∈ F2.

III. Finally, let [x, y]/β′ be isomorphic to C2. From e ∈ P ∨ Q we obtain that
e ⊆ α∨β, hence (x, y) ∈ α∨β. By the definition of the join of equivalence relations,
there exist elements z0 = x, z1, . . . , zk = y such that (zi, zi+1) ∈ α ∪ β for every
i = 0, . . . , k − 1. Let ti = y ∧ ∨i

j=0 zj. Then

x = t0 ≤ t1 ≤ · · · ≤ tk = y.

and it is easy to show by induction that (ti, ti+1) ∈ α ∪ β for every i. We can
also assume that the sequence t0, . . . , tk does not contain redundant elements, i.e.,
(ti, ti+1) belongs to exactly one of the congruences α, β. Now, if (x, t1) ∈ α, then
(x, t1) /∈ β, and so (t1, y) ∈ β, and consequently at1 ∈ P , bt1 ∈ Q, (at1 , bt1) ∈ F1.
Similarly, if (x, t1) ∈ β, we get bt1 ∈ P , at1 ∈ Q and (bt1 , at1) ∈ F2. This completes
the proof. �

The same proof would work for any lattice in M∞, the variety generated by all
lattices of length 2. For lattices outside this variety, the decomposition systems
considered in the above proof are, in general, not rich enough. Nevertheless, it is
still possible that LSP holds in Conc A for every lattice A.

Problem 3.3. Does LSP hold in Conc A for every lattice A?
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In the next Section we construct an example of a distributive semilattice without
LSP. Thus, the positive answer to 3.3 would imply the negative solution of CLP.

4. A distributive semilattice without LSP

In this Section we construct a distributive semilattice which does not have LSP.
We use the topological representation mentioned in the Section 2 and define our
semilattice as the semilattice of all compact open subsets of a suitable topological
space.

For any function f let dom(f) and rng(f) denote its domain and range, respec-
tively.

Let M denote the 5-element set {0, 1, a, b, c}. Let X be any set. Let TX =
{f ∈ MX | f(X) ⊆ {0, 1} or {a, b, c} ⊆ f(X)}.

For every u, v ∈ {a, b, c}, u �= v we define functions

p
{u,v}
0 , p

{u,v}
1 : {0, 1, u, v} → {0, 1}

(abbreviated by puv
0 , puv

1 ) as follows:

puv
0 (0) = puv

1 (0) = 0, puv
0 (1) = puv

1 (1) = 1 for every u, v;

pab
0 (a) = pab

0 (b) = 0, pab
1 (a) = pab

1 (b) = 1;

pbc
0 (b) = pbc

0 (c) = 0, pbc
1 (b) = pbc

1 (c) = 1;

pac
0 (a) = pac

1 (c) = 0, pac
0 (c) = pac

1 (a) = 1.

Further we denote

S0 = {r : X0 → M | X0 ⊆ X is finite, rng(r) ⊆ {0, 1}};
S1 = {r : X0 → M | X0 ⊆ X is finite, {a, b, c} ⊆ rng(r)}.

For every r ∈ S0 let

Kr =
{
f ∈ MX

∣∣ f(dom(r)) ⊆ {0, 1, u, v} for some u, v ∈ {a, b, c}
and

(
r = puv

0 · (f � dom(r)) or r = puv
1 · (f � dom(r))

)}
.

It is easy to see that this definition is unambiguous even if f(dom(r)) ⊆ {0, 1, u}.
(In this case there are two possible choices for v.) If f(dom(r)) ⊆ {0, 1} then
f ∈ Kr iff r = f � dom(r).

For every r ∈ S1 let

Kr =
{
f ∈ MX

∣∣ r = f � dom(r)
}
.

Finally, for every r ∈ S0 ∪ S1 let Gr = Kr ∩ TX and let G = {Gr | r ∈ S0 ∪ S1}.
Lemma 4.1. Let r ∈ S0 ∪ S1, f, g, g0, g1 ∈ MX .

(i) If f � dom(r) = g � dom(r) then f ∈ Kr iff g ∈ Kr.
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(ii) If f(dom(r)) ⊆ {0, 1, u, v} for some u, v ∈ {a, b, c} and gn � dom(r) = puv
n · f �

dom(r) (n = 0, 1), then f ∈ Kr iff g0 ∈ Kr or g1 ∈ Kr.

Proof. Obvious. �

Lemma 4.2. For any Gr, Gs ∈ G, the set Gr ∩Gs is a union of some sets from G.
Hence, G is a base of some topology on TX.

Proof. For every f ∈ Gr ∩ Gs we will find Gt ∈ G with f ∈ Gt ⊆ Gr ∩ Gs. (If
Gr ∩ Gs = ∅, we have nothing to prove.)

Suppose first that rng(f) ⊆ {0, 1}. This is only possible if r, s ∈ S0, r = f �
dom(r), s = f � dom(s). Choose a finite set X0 ⊆ X with X0 ⊇ dom(r) ∪ dom(s)
and let t = f � X0. Clearly, f ∈ Gt ⊆ Gr ∩ Gs.

Now let rng(f) �⊆ {0, 1}. Choose a finite set X0 ⊆ X such that X0 ⊇ dom(r) ∪
dom(s) and f(X0) = rng(f). Let t = f � X0. Then t ∈ S1 and f ∈ Gt. For every
g ∈ Gt we have g � X0 = f � X0, which by Lemma 4.1 implies that g ∈ Gr∩Gs. �

Lemma 4.3. Every Gr ∈ G is compact.

Proof. First notice that in the usual product topology of the space MX the sets Kr

are open and compact. Suppose that Gr ⊆ ⋃
i∈I Gri . We claim that the set Kr is

covered by Kri . Let f ∈ Kr. If f ∈ TX then clearly f ∈ Gri ⊆ Kri for some i. Let
f ∈ MX \ TX . Then necessarily r ∈ S0 and rng(f) contains at most two of a, b, c.
Let us assume that rng(f) ⊆ {0, 1, a, b}. (The other two cases are similar.) Then
r = pab

n · f � dom(r), where n ∈ {0, 1}. Let g = pab
n · f . Then g � dom(r) = r, hence

g ∈ Kr. Since rng(g) ⊆ {0, 1}, we have g ∈ Gr. Thus, g ∈ Gri ⊆ Kri for some i.
By Lemma 4.1, f ∈ Kri .

Thus, in the product topology, the compact set Kr is covered by open sets
Kri. Hence, there is a finite set I0 ⊆ I such that Kr ⊆ ⋃{Kri | i ∈ I0}. Then
Gr = Kr ∩ TX ⊆ ⋃{Gri | i ∈ I0}, which shows that Gr is compact. �

The above proof works also in the case when r is an empty map, so the whole
space TX = G∅ is compact too.

Thus, TX has a basis of compact open sets. Let LX be the family of all open
subsets of TX ordered by the set inclusion. It is clear that LX is a distributive
algebraic lattice. Compact elements of LX are exactly the (topologically) compact
open subsets of TX and they form a distributive semilattice SX . The whole space
TX is compact, so it is the largest element of SX . We have the following description
of elements of SX .

Lemma 4.4. A set G belongs to SX if and only if G = G1 ∪ · · ·∪Gn for some sets
G1, . . . , Gn ∈ G.
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Proof. A finite union of compact sets is compact. Conversely, every open set is a
union of some sets from G. If this set is compact, the union can be chosen finite. �

For every G ∈ SX we fix its representation in the form G = Gr1 ∪ · · · ∪ Grn for
some r1, . . . , rn ∈ S0 ∪ S1 and define dom(G) = dom(r1) ∪ · · · ∪ dom(rn). Hence,
for every compact open set G we have a finite set dom(G) ⊆ X .

Lemma 4.5. Let G be compact open. Let f, g, g0, g1 ∈ TX.

(i) If f � dom(G) = g � dom(G) then f ∈ G iff g ∈ G.
(ii) If f(dom(G)) ⊆ {0, 1, u, v} for some u, v ∈ {a, b, c} and gn � dom(G) = puv

n ·f �
dom(G) (n = 0, 1), then f ∈ G iff g0 ∈ G or g1 ∈ G.

Proof. This is a direct consequence of Lemmas 4.1 and 4.4. �

Lemma 4.6. Let f, g ∈ TX , f �= g. Then there exists an open set G such that
f ∈ G, g �∈ G.

Proof. There exists a finite set X0 ⊆ X such that f(X0) = f(X), g(X0) = g(X)
and f � X0 �= g � X0. Let us set s = f � X0. Then clearly s ∈ S0 ∪ S1 and f ∈ Gs.
Further, f � X0 �= g � X0 implies g �∈ Gs. (Notice that the case g(X0) ⊆ {0, 1, u, v}
for some u, v ∈ {a, b, c} is only possible when g(X0) ⊆ {0, 1}.) �

The proof that our semilattice does not have LSP is based on the following
statement of infinite combinatorics, see C. Kuratowski [2]. Recall that [X ]2 denotes
the family of all 2-element subsets of X and [X ]<ω stands for the family of all finite
subsets of X .

Lemma 4.7. Let X be a set with the cardinality at least ℵ2. Then for every map
Φ: [X ]2 → [X ]<ω there exists a three-element set M such that x /∈ Φ(M \ {x}) for
every x ∈ M .

For every f ∈ TX the set TX \ {f} is a maximal open (by Lemma 4.6) subset of
TX . Consequently,

If = {U ∈ SX | f /∈ U}
is a maximal (and hence completely meet-irreducible) ideal of SX .

Theorem 4.8. Let g ∈ TX be defined by g(x) = 0 for every x ∈ X. If |X | ≥ ℵ2

then SX does not have LSP at (TX , Ig).

Proof. Since Ig is a maximal ideal, we have TX ∈ Ig ∨ Q for every Q ∈ M(Id(SX))
with Q �⊆ Ig . For contradiction, suppose that there are uniformly refinable decom-
position systems F1, . . . ,Fn at TX such that for every Q �⊆ Ig there is (A, B) ∈⋃n

i=1 Fi with A ∈ Ig, B ∈ Q.
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For every x ∈ X let fx ∈ TX be the characteristic function of the set {x}, i.e.
fx(x) = 1 and fx(y) = 0 for y �= x. Every ideal Ifx is maximal, so Ifx �⊆ Ig . For
k = 1, . . . , n let

Xk = {x ∈ X | A ∈ Ig and B ∈ Ifx for some (A, B) ∈ Fk}.
Equivalently, Xk = {x ∈ X | g �∈ A, fx �∈ B for some (A, B) ∈ Fk}. By our
assumption, X1 ∪ · · · ∪ Xn = X , so some of the sets Xk must have the cardinality
at least ℵ2. We can assume that |X1| ≥ ℵ2.

Let us denote the elements of F1 by (Ai, Bi), i ∈ I. The uniform refinability of
F1 means that there are sets Cij ∈ SX (i, j ∈ I, i �= j) such that

(1) Cij ⊆ Ai ∩ Bj for every different i, j;
(2) Cij ∪ Aj ∪ Bi = TX for every different i, j;
(3) Cik ⊆ Cij ∪ Cjk for every different i, j, k.

For every x ∈ X1 we fix i(x) ∈ I with g �∈ Ai(x), fx �∈ Bi(x). Let us set
x ∼ y iff i(x) = i(y). From Lemma 4.5 we deduce that x ∈ dom(Bi(x)). (Otherwise
g � dom(Bi(x)) = fx � dom(Bi(x)), hence g �∈ Bi(x), which is impossible since Ai(x)∪
Bi(x) = TX .) Since dom(Bi(x)) is finite, the equivalence ∼ has finite equivalence
classes. It is therefore possible to choose a set Y ⊆ X1 such that |Y | ≥ ℵ2 and
i(x) �= i(y) for every x, y ∈ Y , x �= y. For every x, y ∈ Y , x �= y we define

Φ({x, y}) = Y ∩ (
dom(Ai(x)) ∪ dom(Bi(x)) ∪ dom(Ai(y))
∪ dom(Bi(y)) ∪ dom(Ci(x)i(y)) ∪ dom(Ci(y)i(x))

)
.

Hence, Φ is a function [Y ]2 → [Y ]<ω. By Lemma 4.7, there are elements x1, x2, x3 ∈
Y such that x1 �∈ Φ({x2, x3}), x2 �∈ Φ({x1, x3}), x3 �∈ Φ({x1, x2}). Let us write fm,
Am, Bm, Cmn instead of fxm , Ai(xm), Bi(xm), Ci(xm)i(xn). Let us define a function
h : X → M by

h(x) =

⎧⎪⎪⎨
⎪⎪⎩

a if x = x1;
b if x = x2;
c if x = x3;
0 otherwise.

Since x1 �∈ dom(A3), we have f1 � dom(A3) = g � dom(A3), so g /∈ A3 implies
f1 �∈ A3 by Lemma 4.5. Also, f1 �∈ B1, so f1 ∈ C13 by (2). Further, f1 � dom(C13) =
pac
1 · (h � dom(C13)), so h ∈ C13 by Lemma 4.5.

Now we claim that h �∈ C12. Let f12 ∈ TX be defined by f12(x1) = f12(x2) =
1 and f12(y) = 0 for every y �∈ {x1, x2}. Since x1 �∈ dom(B2), we have f12 �
dom(B2) = f2 � dom(B2), so f2 �∈ B2 implies that f12 �∈ B2, hence f12 �∈ C12 ⊆ B2.

Since x3 �∈ dom(C12), we have h(dom(C12)) ⊆ {0, 1, a, b}. It is easy to see that
g � dom(C12) = pab

0 · (h � dom(C12)) and f12 � dom(C12) = pab
1 · (h � dom(C12)).

Since g /∈ C12 ⊆ A1 and f12 �∈ C12, we obtain that h �∈ C12 by Lemma 4.5.
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Finally, we claim that h �∈ C23. We consider f23 ∈ TX defined by f23(x2) =
f23(x3) = 1 and f23(y) = 0 otherwise. Similarly as above, h(dom(C23)) ⊆
{0, 1, b, c}, g � dom(C23) = pab

0 · (h � dom(C23)) and f23 � dom(C23) = pab
1 · (h �

dom(C23)), g �∈ C23 ⊆ A2 and f23 �∈ C23 hence h �∈ C23 by Lemma 4.5.
Thus, h ∈ C13 \ (C12 ∪ C23), which contradicts (3). �

5. The case |X | ≤ ℵ1

In contrast to the previous section, we will prove that LX is isomorphic to Con A

for some A ∈ M3 whenever |X | ≤ ℵ1. This is very nontrivial. Fortunately, most
of the work has been done in [4].

Lemma 5.1. (See [4], Theorem 4.2.) Let L be a distributive algebraic lattice con-
taining at most ℵ1 compact elements. The following conditions are equivalent:

(1) L is isomorphic to Con A for some bounded lattice A ∈ M3;
(2) L is isomorphic to the open sets lattice of some topological space Z satisfying

the following conditions:
(i) Z is compact and has a base of compact open sets;
(ii) Z is a disjoint union of two Hausdorff zerodimensional spaces Z0 and Z1;
(iii) Z0 is a closed subspace of Z;
(iv) if x ∈ Z1, y ∈ Z \ {x} then there exists a clopen set G with x ∈ G ⊆ Z1,

y �∈ G;
(v) if x, y, z ∈ Z are mutually different then there exist open sets A, B, C such

that x ∈ A, y ∈ B, z ∈ C and A ∩ B ∩ C = ∅.

We want to apply this characterization to the space TX .

Lemma 5.2. For every r ∈ S1, the set Gr is closed (and hence clopen).

Proof. Let f ∈ TX \ Gr . Choose a finite set X0 ⊆ X such that dom(r) ⊆ X0

and f(X) = f(X0). Let s = f � X0. Then s ∈ S0 ∪ S1, f ∈ Gs and we claim
that Gr ∩ Gs = ∅. Let g ∈ Gr. If s ∈ S0, then g �∈ Gs because g(dom(s)) ⊇
g(dom(r)) ⊇ {a, b, c}. If s ∈ S1, then g � dom(r) = r �= f � dom(r), hence
g � dom(s) �= f � dom(s) = s, so g �∈ Gs. �

Lemma 5.3. Let W ⊆ TX be open, f ∈ W , rng(f) ⊇ {a, b, c}. Then there is
r ∈ S1 such that f ∈ Gr ⊆ W .

Proof. Since W is open, there is s ∈ S0 ∪ S1 with f ∈ Gs ⊆ W . There is a finite
set Y ⊆ X such that dom(s) ⊆ Y and f(Y ) ⊇ {a, b, c}. Let r = f � Y . Clearly,
f ∈ Gr ⊆ Gs. �

Let us denote Z0 = {f ∈ TX | f(X) ⊆ {0, 1}}, Z1 = TX \ Z0.
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Lemma 5.4. If f, g, h ∈ TX are mutually different then there exist open sets
A, B, C ⊆ TX such that f ∈ A, g ∈ B, h ∈ C and A ∩ B ∩ C = ∅.

Proof. By Lemma 4.6, all finite sets are closed. If any of f, g, h belongs to Z1 (say,
f ∈ Z1), then by Lemmas 5.3 and 5.2 there exists a clopen set G with f ∈ G,
g, h �∈ G. We can set A = G, B = C = TX \ G.

Assume now that f, g, h ∈ Z0. Since they are different, there is a finite set (in
fact, a 3-element set) X0 such that r = f � X0, s = g � X0 and t = h � X0 are
different. We set A = Gr, B = Gs, C = Gt. Then f ∈ A, g ∈ B, h ∈ C. For
contradiction suppose that k ∈ A∩B ∩C. Then there are u, v ∈ {a, b, c} such that
each of r, s, t is equal to puv

0 · k � X0 or to puv
1 · k � X0. Since r, s, t are different,

this is impossible. �

Theorem 5.5. If |X | ≤ ℵ1 then there is a lattice M ∈ M3 such that LX is
isomorphic to Con M .

Proof. If |X | ≤ ℵ1 then |G| ≤ ℵ1. By Lemma 4.4, TX has at most ℵ1 compact open
sets and hence LX has at most ℵ1 compact elements. It suffices to show that the
space TX satisfies (i)–(v) of Lemma 5.1.

By 4.2 and 4.3, TX has a basis of compact open sets. For the compactness of TX

see the remark after 4.3. From the definition it is easy to see that Z0 inherits the
topology from {0, 1, a, b, c}X, a power of a discrete space. Thus, Z0 is Hausdorff
zerodimensional. The same is true for Z1 by Lemmas 5.2 and 5.3. Further, (iii)
follows from the fact that every f ∈ Z1 belongs to some Gr with r ∈ S1. Finally
(iv) and (v) were proved in Lemma 5.3 and 5.4. �
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