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FINITE CONGRUENCE LATTICES IN CONGRUENCE
DISTRIBUTIVE VARIETIES

MIROSLAV PLOŠČICA

Abstract. We present a general theorem characterizing finite congruence lat-

tices of algebras belonging to a congruence distributive variety. We apply the
result to some small varieties of lattices.

1. Introduction

This paper is a contribution to the following general problem: Characterize lattices
isomorphic to congruence lattices of algebras in a given variety V. This problem
has proved to be very hard and there are very few varieties for which we have a
satisfactory answer. For instance, there is a longstanding problem whether every
algebraic distributive lattice is isomorphic to the congruence lattice of some lattice.

In this paper we restrict our attention to congruence distributive varieties (CD
varieties), i.e. varieties in which every member has a distributive congruence lattice.
The most common examples of such varieties are the varieties of lattices and lattice-
ordered structures (l-groups, MV-algebras, etc.). We consider the finite case of the
above problem and present a general theorem characterizing finite lattices isomorphic
to congruence lattices of algebras in a given CD variety V. As we have already
mentioned, the analogous question for infinite lattices is much more complicated.
Some attempts to investigate the infinite case are contained in [5].

Our result is based on the observation that an algebra with a prescribed congruence
lattice can often be constructed as the limit of a suitable commutative diagram of
subdirectly irreducible algebras. Thus, our result is useful mainly for those varieties,
where we have a good knowledge of subdirectly irreducible algebras.

Our basic reference books are [1],[2] and [4]. All the unexplained notions and facts
can be found there. We use the following special denotations. If P is a partially
ordered set and x ∈ P then ↑ x = {y ∈ P | y ≥ x}. If f : A → B is a mapping
then the binary relation Ker(f) = {(x, y) ∈ A2 | f(x) = f(y)} is called the kernel of
f . The symbol ∆A denotes the diagonal relation {(x, x) | x ∈ A} on A. If α is an
equivalence relation on a set A, then A/α denotes the set of equivalence classes of α
and x/α is the equivalence class containing x ∈ A. The Cartesian product of sets Ai
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(i ∈ I) is denoted by Πi∈IAi. We use the notation a = (ai)i∈I for elements of such
product and speak about ai as the i-th coordinate of a.

2. The general result

First we present a purely set-theoretical construction. An ordered diagram of sets
is a triple (P,A,F), where P is a partially ordered set, A = {Ap | p ∈ P} is a
family of sets indexed by P and F = {fpq | p, q ∈ P, p ≤ q} is a family of functions
fpq : Ap → Aq such that

(1) fpp is the identity map for every p ∈ P ;
(2) fqrfpq = fpr for every p, q, r ∈ P , p ≤ q ≤ r.

For any ordered diagram of sets we define its limit as

lim(P,A,F) = {a ∈ Πp∈P Ap | aq = fpq(ap) for every p, q ∈ P, p ≤ q}.

Thus, our limit is the limit in the sense of the category theory (applied to the category
of sets). In the universal algebra, this construction is often called the inverse limit
(see [2]). Now we introduce the crucial concept of this paper.

Definition 2.1. An ordered diagram of sets (P,A,F) is called admissible if the fol-
lowing conditions are satisfied:

(i) for every p ∈ P and every u ∈ Ap there exists a ∈ lim(P,A,F) such that
ap = u;

(ii) for every p, q ∈ P , p 6≤ q there exist a, b ∈ lim(P,A,F) such that ap = bp and
aq 6= bq.

Admissible ordered diagrams arise naturally from systems of equivalences on a
given set, as shown by the following assertion.

Lemma 2.2. Let P be some set of equivalences on a set A, ordered by the set in-
clusion. For every α ∈ P let Aα = A/α. For α ⊆ β let fαβ : A/α → A/β be
the natural projection map, i.e. fαβ(x/α) = x/β. Then (P,A,F) is an admissible
ordered diagram of sets.

Proof. It is clear that (P,A,F) is an ordered diagram of sets. For every x ∈ A the
element x = (x/α)α∈P belongs to lim(P,A,F), so 2.1(i) is satisfied. Further, let
α, β ∈ P , α * β. Then there are x, y ∈ A with (x, y) ∈ α, (x, y) /∈ β. We have
x, y ∈ lim(P,A,F), xα = x/α = y/α = yα and xβ = x/β 6= y/β = yβ , which proves
2.1(ii).

On the other hand, it is not difficult to construct ordered diagrams which are not
admissible.

Now we turn our attention to congruence lattices by recalling some fundamental
facts from the lattice theory and the universal algebra. An element x 6= 1 of a lattice
L is called meet-irreducible if x = y∧z implies x ∈ {y, z}. An element x is strictly (or
completely) meet-irreducible if x = inf X (X ⊆ L) implies x ∈ X. Equivalently, x is
strictly meet-irreducible if the set {y ∈ L | y > x} has a smallest element. Of course,
if L is finite then every meet-irreducible element is strictly meet-irreducible. If x is
meet-irreducible and L is distributive then, for every x1, . . . , xn ∈ L, x1∧· · ·∧xn ≤ x
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implies that xi ≤ x for some i. Let M(L) denote the set of all strictly meet-irreducible
elements of L.

We do not distinguish between an algebra and its underlying set. Let ConA
denote the congruence lattice of an algebra A. It is well known that an algebra A is
subdirectly irreducible iff ∆A (the smallest element of ConA) belongs to M(ConA).
More generally, θ ∈ M(ConA) iff the factor algebra A/θ is subdirectly irreducible.
This is a direct consequence of the fact that ConA/θ is isomorphic to ↑ θ (a subset
of ConA).

If V is a variety (a class of algebras closed under direct products, subalgebras
and homomorphic images) then SI(V) denotes the class of all subdirectly irreducible
members of V. The facts recalled above have the following consequence.

Lemma 2.3. Let V be a variety and L = Con A for some A ∈ V. Then for every
x ∈ M(L), the lattice ↑x is isomorphic to ConT for some T ∈ SI(V).

This lemma provides a basic information about congruence lattices of algebras in
V. It is especially effective in the case of a CD variety V and a finite lattice L, because
finite distributive lattices are determined uniquely by the ordered sets of their meet-
irreducible elements. However, 2.3 does not provide a complete characterization of
finite congruence lattices for CD varieties.

Theorem 2.4. Let V be a CD variety. Let L be a finite distributive lattice. Let
P = M(L). For every p ∈ P let Ap ∈ V and for every p ≤ q let fpq : Ap → Aq be
a homomorphism such that (P,A,F) is an admissible ordered diagram of sets (with
A = {Ap | p ∈ P} and F = {fpq | p ≤ q}) and, moreover,

(*) for all p ∈ P , the sets {Ker(fpq) | q ≥ p} and M(ConAp) coincide.
Then lim(P,A,F) is an algebra whose congruence lattice is isomorphic to L.

Proof. Let A = lim(P,A,F). It is easy to see that A is a subalgebra of the algebra
Πp∈P Ap. Hence, A ∈ V, so ConA is distributive. Since every finite distributive lattice
is determined by its ordered set of meet-irreducible elements, it suffices to prove that
the ordered sets P and M(ConA) are isomorphic. (Strictly speaking, we have not yet
proved that Con A is finite. However, ConA is algebraic and every algebraic lattice
with finitely many completely meet-irreducible elements is finite.)

Condition (*) implies that Ker(fpp) = ∆Ap
belongs to M(ConAp), which means

that Ap is subdirectly irreducible. The condition 2.1(i) ensures that the natural
projections hp : A → Ap (hp(x) = xp) are surjective. Hence, A/ Ker(hp) is isomorphic
to Ap and therefore Ker(hp) ∈ M(ConA). Thus, we can define a map ϕ : P →
M(ConA) by ϕ(p) = Ker(hp). We claim that this is the required isomorphism.

Let p, q ∈ P , p ≤ q. If (x, y) ∈ Ker(hp) then xp = yp, hence xq = fpq(xp) =
fpq(yp) = yq and (x, y) ∈ Ker(hq). Thus, ϕ(p) ≤ ϕ(q).

Let p, q ∈ P , p � q. By 2.1(ii), there are x, y ∈ A such xp = yp and xq 6= yq, hence
(x, y) ∈ Ker(hp) \Ker(hq). Thus ϕ(p) � ϕ(q). Especially, ϕ is injective.

It remains to prove the surjectivity of ϕ. Let β ∈ M(ConA). Clearly,∧
p∈P Ker(hp) = ∆A ≤ β. Since P is finite and β is meet-irreducible, we obtain that

β ≥ Ker(hp) for some p ∈ P . Consider the natural map k : Ap → A/β defined by
k(xp) = x/β. It is easy to check that k is well defined (xp = yp implies x/β = y/β)
and that it is a surjective homomorphism. Since A/β is subdirectly irreducible and
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isomorphic to Ap/ Ker(k), we have Ker(k) ∈ M(ConAp). By our assumption (*) we
have Ker(k) = Ker(fpq) for some q ≥ p. For any x, y ∈ A we have (x, y) ∈ β iff
k(xp) = k(yp) iff (xp, yp) ∈ Ker(k) = Ker(fpq) iff xq = fpq(xp) = fpq(yp) = yq iff
(x, y) ∈ Ker(hq). Hence, β = ϕ(q).

Theorem 2.5. Let V be a CD variety. Let L be a finite distributive lattice. Let
P = M(L). The following conditions are equivalent.

(1) There is A ∈ V such that ConA is isomorphic to L.
(2) There are algebras Ap ∈ V (for p ∈ P ) and homomorphisms fpq : Ap → Aq such

that (P,A,F) is an admissible ordered diagram of sets (with A = {Ap | p ∈ P}
and F = {fpq | p ≤ q}) and, moreover,

(*) for all p ∈ P , the sets {Ker(fpq) | q ≥ p} and M(ConAp) coincide.

Proof. We have just proved the implication (2)=⇒(1). Conversely, let (1) hold.
Then M(ConA) is isomorphic to P , we can assume that M(ConA) = P . For
every α ∈ M(ConA) let Aα = A/α. For every α, β ∈ M(ConA) with α ≤ β
we have a natural homomorphism fαβ : Aα → Aβ . By 2.2, we have constructed
an admissible ordered diagram of sets. By the well known isomorphism theorem,
ConA/α = {β/α | β ∈ ConA, β ≥ α} and therefore M(ConAα) = M(ConA/α) =
{β/α | β ∈ M(ConA), β ≥ α} = {Ker(fαβ) | β ∈ M(ConA), β ≥ α}, which shows
(*).

We admit that our theorem looks rather complicated. It might be possible to find
simpler equivalent conditions, especially under some additional assumptions on the
variety V. We believe that this paper is a good starting point for the research in this
direction.

Nevertheless, our result is applicable to concrete varieties. If V contains only
finitely many subdirectly irreducible algebras, then we have only finitely many ways
to construct an ordered diagram with a prescribed P satisfying 2.5(2). (Notice that
(*) implies subdirect irreducibility of all Ap.) We investigate some varieties in the
next section.

3. Small varieties of lattices
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The application of 2.5 to a variety V requires a good knowledge of subdirectly
irreducible algebras in V. Such knowledge is available in the case of small varieties
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of lattices. We refer to [3] as a good source of information. We often use the well
known fact that if a CD variety V is generated by a single finite algebra A then all
subdirectly irreducible members of V are homomorphic images of subalgebras of A.

The smallest nontrivial variety of lattices is D, the variety of distributive lattices.
The description of ConA for A ∈ D is well known, even in the infinite case. (See [1],
II.3 and II.4.) A finite lattice D is isomorphic to ConA for some A ∈ D if and only
if D is Boolean.

The variety D is covered (in the lattice of varieties) by the varieties M3 and N5

generated by the lattices M3 and N5 depicted above.
The variety M3 has two subdirectly irreducible members: M3 and the 2-element

chain C2 = {0, 1}. Both M3 and C2 are simple, their congruence lattice is a 2-element
chain. If A ∈ M3 then by 2.3 every element of M(ConA) is a coatom of A. Hence,
we obtain the same result as for D: a finite lattice D is isomorphic to ConA for
some A ∈ M3 iff D is Boolean. The congruence lattices of infinite A ∈ M3 have
a much more complicated structure and they differ from the congruence lattices of
distributive lattices ([5]).

The variety N5 has two subdirectly ireducible members: N5 and C2. The lattice
ConN5 is depicted above. It has 3 meet-irreducible elements, namely the zero con-
gruence ∆N5 and the kernels of the two surjective homomorphisms f1, f2 : N5 → C2

given by f1(0) = f1(a) = f1(c) = 0, f1(b) = f1(1) = 1, f2(0) = f2(b) = 0,
f2(a) = f2(c) = f2(1) = 1.

Theorem 3.1. For a finite distributive lattice D, the following conditions are equiv-
alent:

(1) D ∼= ConA for some A ∈ N5;
(2) M(D) is a union of two disjoint antichains M1 and M2 such that for every

x ∈ M2 there are exactly two y ∈ M1 with x < y.

Proof. The implication (1)=⇒(2) follows from 2.3. If D = ConA, A ∈ N5 then
M1 = {α ∈ M(D) | A/α ∼= C2}, M2 = {α ∈ M(D) | A/α ∼= N5}.

Suppose now that (2) is satisfied. Let P = M(D). For every p ∈ M1 let Ap = C2.
For every p ∈ M2 let Ap = N5. For every p ∈ M2 we have exactly two elements of
M1 greater than p; we denote them by p′ and p′′. (Choose arbitrarily which one is
p′ and which is p′′.) Further, define fpp′ = f1, fpp′′ = f2 (with f1, f2 defined above).
It is easy to see that (P,A,F) is an ordered diagram of sets and 2.4(*) is satisfied.
(As usual, we set A = {Ap | p ∈ P}, F = {fpq | p ≤ q}.) It remains to prove that
(P,A,F) is admissible. For every x ∈ Πp∈M1Ap we define x∗ ∈ Πp∈P Ap as follows. If
p ∈ M1 then x∗p = xp and if p ∈ M2 then

x∗p =


0 if xp′ = xp′′ = 0;
a if xp′ = 0, xp′′ = 1;
b if xp′ = 1, xp′′ = 0;
1 if xp′ = xp′′ = 1.

Further, let x∗∗ ∈ Πp∈P be such that x∗∗p = c whenever x∗p = a and x∗∗p = x∗p
otherwise. It is easy to check that x∗, x∗∗ ∈ lim(P,A,F). Since x can be arbitrary,
x∗p and x∗∗p can take any possible value for any p ∈ P . Hence, 2.1(i) holds. To prove
2.1(ii) let p � q. We distinguish several cases.
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Let q ∈ M2. Choose x ∈ Πx∈M1Ap such that xq′ = 0, xq′′ = 1. Then x∗q = a.
Define y ∈ Πp∈P Ap by yq = c and yr = x∗r for every r 6= q. Then also y ∈ lim(P,A,F)
and we have x∗p = yp and x∗q 6= yq.

Let p, q ∈ M1. Choose any x, y ∈ Πp∈M1Ap with xp = yp, xq 6= yq. Then x∗p = y∗p
and x∗q 6= y∗q .

Finally, let p ∈ M2, q ∈ M1. Since p � q, we have q /∈ {p′, p′′}. Choose x, y ∈
Πp∈M1Ap with xp′ = yp′ , xp′′ = yp′′ and xq 6= yq. Clearly, x∗p = y∗p and x∗q 6= y∗q .

Thus, the diagram (P,A,F) is admissible. By 2.4, lim(P,A,F) has the congruence
lattice isomorphic to D.

Finally, let us present one example. Let K be the variety generated by the lattice
K depicted below.
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The lattice K is subdirectly irreducible. Its only nontrivial congruence β collapses
the elements b1 and b2. Thus, K/β is isomorphic to M3. It is not difficult to check
that all sudirectly irreducible algebras in K are (up to isomorphism) K, M3, N5, C2.

Let us consider the finite distributive lattice D depicted above. We are looking
for A ∈ K such that ConA ∼= D. The lattice D satisfies the necessary condition in
2.3. However, we claim that there is no such algebra A.

The ordered set M(D) consists of elements p, q, r, s. (See the picture.) Suppose
for contradiction that there are subdirectly irreducible Ap, Aq, Ar, As ∈ K together
with corresponding homomorphisms satisfying 2.5(2). By 2.3, the only possibility is
Ap = K, Ar = N5. By (*), Ker(fpq) must be equal to β and hence Aq must be M3.
However, Aq is also a homomorphic image of Ar, which is impossible.
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