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Abstract. We investigate local polynomial functions on Stone algebras and on Kleene
algebras. We find a generating set for the clone of all local polynomial functions. We also
represent local polynomial functions on a given algebra by polynomial functions of some
canonical extension of this algebra.

1. Introduction

Let f be an n-ary function on a set A. Let ρ be a k-ary relation on a set A.
We say that f preserves ρ if (f(a11, . . . , a1n), . . . , f(ak1, . . . , akn)) ∈ ρ whenever
(a11, . . . , ak1) ∈ ρ, . . . , (a1n, . . . , akn) ∈ ρ.

An n-ary function f on an algebra A is called compatible (or congruence-preserv-
ing) if it preserves all congruences of A.

It is clear that all polynomial functions on A are compatible. The algebra A
is called affine complete if, conversely, every compatible function is polynomial.
Affine completeness has been investigated for various kinds of algebras. (See [7]
for a survey.) In general, however, there are non-polynomial compatible functions
and our aim is to investigate this phenomenon and characterize the compatible
functions. As a first step in achieving this goal we concentrate on an important
subclass of compatible functions. An n-ary function f on an algebra A is said to
be a local polynomial function of A if it can be interpolated by a polynomial of
A on every finite subset of An. It is well-known (see [10]) that an n-ary function
on an algebra A is a local polynomial iff it preserves all diagonal subalgebras of
finite powers of A. (A subalgebra B of Ak is diagonal if (x, x, . . . , x) ∈ B for every
x ∈ A.) It is also easy to find a local polynomial function which is not polynomial.

It is clear that compatible (local polynomial) functions form a clone. So, we have
the following problem.

Problem 1.1. Given an algebra A, find a nice generating set for the clone of all
compatible (local polynomial) functions.

Another approach to the description of compatible functions (suggested in [3] for
the case of distributive lattices) is via special extensions of algebras. An algebra B
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is called a CEP-extension of A, if A is a subalgebra of B and every congruence of
A is a restriction of some congruence of B. In such a case, every polynomial of B,
which preserves A, restricts to a compatible function on A. So, there is a possibility
to describe compatible functions on A as polynomials of a suitable extension of A.

Problem 1.2. Given an algebra A, construct (if possible) its CEP-extension B
such that every compatible (local polynomial) function on A is a restriction of a
polynomial of B.

The above problems have been solved for Boolean algebras in [2] (every Boolean
algebra is affine complete) and partially (for local polynomial functions) for dis-
tributive lattices in [9]. In the present paper we consider the varieties of Stone and
Kleene algebras. The affine completeness of these algebras has been characterized
in [5], [4], and [6]. We generalize these theorems in the sense that their most diffi-
cult part follows easily from our results. (See Section 2 for the details.) Our proof
covers both the case of Stone algebras and Kleene algebras. Moreover, we solve (the
local polynomial versions of) Problems 1.1 and 1.2. This has not been known either
for Stone algebras, or for Kleene algebras. We hope that the approach developed
here could also be applied to other kinds of algebras.

Since the results for Stone and Kleene algebras are identical, we find it convenient
to work in the variety K∨S generated by the class of all Kleene and Stone algebras.
Some parts of our construction work even in a larger class of Ockham algebras.

An Ockham algebra is an algebra 〈L;∨,∧,∗ , 0, 1〉, where 〈L;∨,∧, 0, 1〉 is a bounded
distributive lattice and ∗ is a unary operation such that 0∗ = 1, 1∗ = 0 and for all
x, y ∈ L,

(x ∧ y)∗ = x∗ ∨ y∗ , (1)
(x ∨ y)∗ = x∗ ∧ y∗ . (2)

We refer to [1] as the basic source of information about Ockham algebras. The
variety K ∨ S is defined by the following additional identities:

x ≤ x∗∗ ; (3)
x ≥ x∗ ∧ x∗∗ ; (4)
x ∧ x∗ ≤ y ∨ y∗ ; (5)
x ∨ y∗ ∨ y∗∗ ≥ x∗∗ . (6)

Equivalently, K ∨ S is the variety generated by the 3-element Kleene algebra
K3 = {0, a, 1} and 3-element Stone algebra S3 = {0, b, 1}. The variety K of Kleene
algebras is characterized in K ∨ S by the identity

x = x∗∗ (7)

and the variety S of Stone algebras is characterized in K ∨ S by the identity

x ∧ x∗ = 0 . (8)

Now we recall some basic denotations and results for K ∨ S-algebras.
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Lemma 1.3. Every algebra in K ∨ S satisfies the following identities.

x = x∗∗ ∧ (x ∨ x∗); (9)
x ∧ y∗ ∧ y∗∗ ≤ x∗∗. (10)

Proof. It is easy to check that the identities hold in both S3 and K3. ¤

For every Ockham algebra A we define

A∨ = {x ∨ x∗ | x ∈ A} = {x ∈ A | x ≥ x∗},
A∧ = {x ∧ x∗ | x ∈ A} = {x ∈ A | x ≤ x∗}.

If A ∈ K ∨ S, then A∨ is a filter and A∧ is an ideal of the lattice A. Further, for
any A ∈ K ∨ S we define

A∗∗ = {x∗∗ | x ∈ A} = {x ∈ A | x = x∗∗}.
Since it easily follows from (3) that x∗ = x∗∗∗, the second equality is immediate.
Note that the set A∗∗ is a subuniverse of A; in fact A∗∗ is a Kleene algebra.

Lemma 1.4. For any A ∈ K ∨ S, the set A∗∗ ∩A∨ is a filter.

Proof. It is easy to see that A∗∗ ∩ A∨ is closed under intersections. Now, let
x ≥ a ∈ A∗∗ ∩A∨. Obviously, x ∈ A∨. We have a∗∗ = a ≥ a∗. Since A satisfies
(6), we obtain that x ≥ x ∨ a∗ ∨ a∗∗ ≥ x∗∗. By (3), x = x∗∗ ∈ A∗∗. ¤

The uncertainty order of the K∨S-algebra A is a binary relation v, defined by

x v y ⇔ x ∧ y∗ ≤ y ≤ x ∨ y∗.

This relation generalizes one which for Kleene algebras was introduced by M.
Haviar, K. Kaarli and M. Ploščica in [4]. It is always a partial order relation. In
the algebra K3 we have 0 v a, 1 v a, while in S3 the only nontrivial related pair is
1 v b. In general, A can be embedded into a direct product of algebras isomorphic
to S3 or K3 and inherits the uncertainty order from this direct product.

A function f on an algebra A ∈ K ∨ S is called uncertainty preserving if it
preserves the uncertainty relation of A. It is easy to check that v is a diagonal
subalgebra of A2 for every A ∈ K∨S and hence it is preserved by all local polyno-
mial functions. In the next section we will show that, conversely, every compatible,
uncertainty preserving function is a local polynomial function.

2. Local polynomial functions

An ideal I of a lattice L is said to be principal if it is of the form ↓u = {x ∈
L | x ≤ u}, for some u ∈ L. We say that I is almost principal if its intersection
with every principal ideal of L is a principal ideal of L. If L has a largest element,
then every almost principal ideal is principal. In general, there are almost principal
ideals which are not principal (See [7] or [9].) The notions of principal and almost
principal filter are defined dually. The whole lattice L is also regarded as an (almost
principal) ideal and filter.
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Let A ∈ K ∨ S. Let I(A) and F(A) denote the set of all almost principal
ideals of the lattice A∧ and the set of all almost principal filters of the lattice A∨,
respectively.

Every F ∈ F(A) determines a function F̂ : A → A given by F̂ (x) = min(F ∩
↑(x ∨ x∗)). If F is principal, then the function F̂ is polynomial, because F̂ (x) =
x ∨ x∗ ∨min F . In general, we have the following assertion.

Lemma 2.1. For every F ∈ F(A) the function F̂ is a local polynomial.

Proof. Let x1, . . . , xn ∈ A. Since F is a filter, it is possible to choose u ∈ F with
u ≤ F̂ (xi) for every i = 1, . . . , n. Then clearly F̂ (xi) = u∨xi∨x∗i , so the polynomial
p(x) = u ∨ x ∨ x∗ interpolates F̂ on {x1, . . . , xn}. ¤

In the sequel we often assume that A is a subalgebra of a direct product

Πi∈IAi, (11)

where each Ai is isomorphic to S3 or K3. We consider the elements of A in the
form a = (ai)i∈I . Then a v b iff ai v bi for every i ∈ I. Further, let f : An → A
be compatible and i ∈ I. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be elements of
An such that (xk)i = (yk)i, for every k = 1, . . . , n. Then f(x)i = f(y)i. (It follows
from the fact that the projection on the i-th coordinate is a homomorphism, so f
must preserve its kernel.)

We are going to prove that every compatible, uncertainty preserving function on
A is a composition of polynomials and functions of the type F̂ . First we prove it
for a special case. Let f : An → A be a compatible, uncertainty preserving function
whose range is contained in A∨.

Consider the set Q of all ordered pairs α = (α1, α2) with α1, α2 ⊆ {1, . . . , n},
α1 ∩ α2 = ∅. For y ∈ A, α ∈ Q let yα denote the n-tuple (yα

1 , . . . , yα
n), where

yα
k =





0 if k ∈ α1;
1 if k ∈ α2;
y otherwise.

Further, let
Fα = {u ∈ A | u ≥ f(yα) for some y ∈ A∨}.

Lemma 2.2. Let f be an n-ary compatible, uncertainty preserving function on an
algebra A ∈ K ∨ S with the range contained in A∨. Then Fα ∈ F(A), for every
α ∈ Q. Moreover, F̂α(x) = x ∨ f(xα), for every x ∈ A∨.

Proof. Let α ∈ Q, x ∈ A∨. We claim that

min(Fα ∩ ↑x) = x ∨ f(xα). (12)

Certainly, x ∨ f(xα) ∈ Fα ∩ ↑x. Now let s be an arbitrary element of Fα ∩ ↑x.
Let g : A → A be defined by g(y) = f(yα). This function is also compatible and
uncertainty preserving. We need to show that s ≥ x ∨ g(x). Obviously, s ≥ x. We
use the decomposition (11) and show the inequality si ≥ g(x)i, for every i ∈ I. The
latter is trivial if we have that si = 1 or g(x)i ∈ {a, b}. Assume that si ∈ {a, b},
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g(x)i = 1. Since x ≤ s, we have xi = si. Further, s ∈ Fα implies that s ≥ g(y)
for some y ∈ A∨. If yi ∈ {a, b}, then yi = xi, which implies that si ≥ g(y)i =
g(x)i = 1, a contradiction. If yi = 1, then g(y)i = g(1)i. Since 1 v x, we have
g(1)i v g(x)i = 1, hence si ≥ g(y)i = g(1)i = 1, a contradiction again.

Thus, (12) is proved. Now we show that Fα is closed with respect to meets. Let
x, y ∈ Fα. By the first part of this proof, there exists u = min(Fα ∩ ↑(x ∧ y)).
Clearly, u ≤ x, u ≤ y and u ∈ Fα, which implies that u ≤ x ∧ y ∈ Fα.

Finally, the formula F̂α(x) = x ∨ f(xα) follows from (12) and the definition of
F̂α. ¤

Let n = {1, . . . , n}. For x = (x1, . . . , xn) ∈ An we define

gα(x) =

{∨
k∈α1

x∗∗k ∨∨
k∈α2

x∗k ∨
∨

k/∈α1∪α2
F̂α(xk) if α1 ∪ α2 6= n∨

k∈α1
x∗∗k ∨∨

k∈α2
x∗k ∨min Fα if α1 ∪ α2 = n

(13)

Notice that if α1 ∪ α2 = n, then f(yα) is a constant and hence Fα is a principal
ideal.

Lemma 2.3. Let f be an n-ary compatible, uncertainty preserving function on an
algebra A ∈ K ∨ S with the range contained in A∨. Then

f(x) =
∧

α∈Q
gα(x) ,

for every x ∈ An.

Proof. We use the decomposition (11). Let i ∈ I. We show that

f(x)i =
∧

α∈Q
gα(x)i. (14)

Let β1 = {k | (xk)i = 0}, β2 = {k | (xk)i = 1}. We have c ∈ {a, b} such that
(xk)i = c for every k ∈ n \ (β1 ∪ β2). If β1 ∪ β2 6= n, then choose j ∈ n \ (β1 ∪ β2)
arbitrarily and put y = xj ∨ x∗j . If β1 ∪ β2 = n, then put y = min Fβ . In both
cases, (yβ

k )i = (xk)i for every k. Since f and all gα are compatible, we have
f(x)i = f(yβ)i, gα(x)i = gα(yβ)i.

It is easy to check that gβ(yβ) = F̂β(y). By Lemma 2.2, we have F̂β(y) =
y ∨ f(yβ). Further, f(yβ) ∈ A∨ implies that yi ≤ f(yβ)i. (If β1 ∪ β2 6= n, then
yi = c = minA∨

i .) Hence, we have

f(x)i = f(yβ)i = yi ∨ f(yβ)i = F̂β(y)i = gβ(yβ)i = gβ(x)i,

which shows that the left hand side of (14) is greater than or equal to the right
hand side. For the opposite inequality we need to show that

f(yβ)i ≤ gα(yβ)i, (15)

for every α ∈ Q. This is clear if f(yβ)i 6= 1 (since gα(yβ) ∈ A∨) or β1 * α1

or β2 * α2 (because then gα(yβ) = 1). Suppose now that f(yβ)i = 1, β1 ⊆ α1,
β2 ⊆ α2. We distinguish two cases.
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a) Let c = b. If β1 6= α1, then gα(yβ)i = 1 and (15) holds. Let β1 = α1. Then
yα

k v yβ
k for every k = 1, . . . , n, hence f(yα)i v f(yβ)i = 1, which implies that

f(yα)i = 1.
Now we compute gα(yβ). If α1 ∪ α2 6= n then gα(yβ) ≥ F̂α(y) = y ∨ f(yα) ≥

f(yα), hence gα(yβ)i ≥ f(yα)i = 1 and (15) holds. If α1 ∪ α2 = n, then gα(yβ) ≥
min Fα = f(yα), so gα(yβ)i = 1, and (15) holds.

b) Let c = a. Then yα
k v yβ

k for every k = 1, . . . , n, so f(yα)i v f(yβ)i = 1, and
we can use the same arguments as above. ¤
Theorem 2.4. For a function f : An → A on A ∈ K∨S, the following conditions
are equivalent.

(i) f is compatible, uncertainty preserving;
(ii) f is a composition of polynomial functions and functions F̂ for F ∈ F(A);
(iii) f is a local polynomial.

Proof. (i)=⇒ (ii) Let f be compatible, uncertainty preserving. By (9) we have the
identity

f(x) = f(x)∗∗ ∧ (f(x) ∨ f(x)∗) .

By Lemma 2.3, we only need to prove our statement for the function f(x)∗∗. Our
claim is that every compatible, uncertainty preserving function g : An → A whose
range is in A∗∗ is a composition of polynomial functions and functions of the type
F̂ . Every such function preserves the Glivenko congruence

Φ = {(x, y) ∈ A2 | x∗ = y∗} ,

so g(x) = g(x∗∗) for every x ∈ An. We prove our claim by induction on n.
The claim is obviously true for nullary functions. Suppose now that n > 0. Let

g0, g1 be the (n− 1)-ary functions defined by

g0(x2, . . . , xn) = g(0, x2, . . . , xn), g1(x2, . . . , xn) = g(1, x2, . . . , xn).

We show the following equality for every x ∈ An:

g(x) = ((g(x) ∧ x∗1 ∧ x∗∗1 ) ∨ g0(y) ∨ g1(y)) ∧ (g0(y) ∨ x∗∗1 ) (16)
∧(g1(y) ∨ x∗1) ∧ (g(x) ∨ x∗1 ∨ x∗∗1 ),

where y = (x2, . . . , xn). Denote by h(x) the right hand side of (16). On both sides
of (16) we have compatible functions whose range is contained in A∗∗, so it suffices
to prove (16) for all x1, . . . , xn ∈ A∗∗. We consider the decomposition (11) and
show that g(x)i = h(x)i for all i ∈ I.

If (x1)i = 0 then the compatibility of g yields g(x)i = g0(y)i and it is easy to
compute that h(x)i = g0(y)i. Similarly, if (x1)i = 1, then g(x)i = g1(y)i = h(x)i.

The remaining case is (x1)i = a. Obviously, 0 v x1 ∧ x∗1 and 1 v x1 ∨ x∗1. Since
(x1∧x∗1)i = (x1∨x∗1)i = a = (x1)i, we obtain that g0(y)i v g(x1∧x∗1, x2, . . . , xn)i =
g(x)i and similarly g1(y)i v g(x)i. If g(x)i ∈ {0, 1}, then necessarily g0(y)i =
g1(y)i = g(x)i and it is easy to check that also h(x)i = g(x)i. If g(x)i = a, then it
is easy to compute that h(x)i = a.

Thus, (16) is proved. The functions k(x) = (g(x) ∧ x∗1 ∧ x∗∗1 )∗ and g(x) ∨ x∗1 ∨
x∗∗1 have the range contained in A∨, so, by Lemma 2.3, they are compositions of
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polynomial functions and functions of the type F̂ . The same is then true for the
function g(x)∧x∗1∧x∗∗1 = k(x)∗ and, by the induction hypothesis, for the functions
g0(y) and g1(y). Consequently, the statement holds for the function g.

(ii)=⇒(iii) This follows from Lemma 2.1.
(iii)=⇒(i) This follows from the fact that the uncertainty relation as well as all

congruences are diagonal subalgebras of A2. ¤

The equivalence of (i) and (iii) is known for Kleene algebras ([4]) as well as for
Stone algebras ([7]). Thus, we have generalized both of these results. Moreover,
the equivalence of (ii) and (iii) gives solution to Problem 1.1 (in the case of local
polynomial functions) for Stone and Kleene algebras (in fact, for the variety K∨S).

The affine completeness of Kleene and Stone algebras has been characterized as
follows. (See [4], [5] or [7].)

Theorem 2.5. An algebra A ∈ K∪S is affine complete iff the following conditions
hold.

(i) A∨ does not contain a nontrivial Boolean interval.
(ii) For every F ∈ F(A) there is u ∈ A such that F = ↑u ∩A∨.

The most difficult part of the proof is the statement that, assuming (ii), every
compatible, uncertainty preserving function is a polynomial. Now this statement
follows easily from 2.4, because (ii) implies that F̂ (x) = u ∨ x ∨ x∗ for every F ∈
F(A), so all functions F̂ are polynomial.

3. Ideal-filter extensions of Ockham algebras

Let A be an Ockham algebra. Let I(A) and F(A) denote its ideal lattice and its
filter lattice respectively. The set I(A) is ordered by the usual set inclusion, while
F(A) is ordered by the inverse set inclusion (F ≤ G iff G ⊆ F ). Thus, for every
I, J ∈ I(A), F, G ∈ F(A), we have

I ∧ J = I ∩ J ;
F ∨G = F ∩G;
I ∨ J = {x ∈ A | x ≤ y ∨ z for some y ∈ I, z ∈ J};

F ∧G = {x ∈ A | x ≥ y ∧ z for some y ∈ F, z ∈ G}.
We use the same lattice operations symbols in A, I(A) and F(A), hoping that

no confusion arises. Since A is a distributive lattice, I(A) and F(A) are distributive
too. Further, for every I ∈ I(A), F ∈ F(A) we define

I∗ = {x ∈ A | x ≥ a∗ for some a ∈ I};
F ∗ = {x ∈ A | x ≤ a∗ for some a ∈ F}.

For any x, y ∈ I∗ we have a, b ∈ I with x ≥ a∗, y ≥ b∗, and then x∧y ≥ a∗∧b∗ =
(a ∨ b)∗, hence x ∧ y ∈ I∗. This shows that I∗ ∈ F(A). Similarly, F ∗ ∈ I(A).

Lemma 3.1. Let A be an Ockham algebra and let I, J ∈ I(A), F, G ∈ F(A). Then
(i) (I ∨ J)∗ = I∗ ∧ J∗;
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(ii) (F ∨G)∗ = F ∗ ∧G∗;
(iii) (I ∧ J)∗ = I∗ ∨ J∗;
(iv) (F ∧G)∗ = F ∗ ∨G∗.

Proof. (1) Clearly, (I ∨ J)∗ ⊇ I∗ ∪ J∗. By definition, I∗ ∧ J∗ is the smallest filter
containing both I∗ and J∗. Thus, (I ∨ J)∗ ⊇ I∗ ∧ J∗. Conversely, let x ∈ (I ∨ J)∗.
Then x ≥ a∗ for some a ∈ I ∨ J . There are b ∈ I, c ∈ J with a ≤ b ∨ c. Then
a∗ ≥ b∗ ∧ c∗, so x ≥ b∗ ∧ c∗. Since b∗ ∈ I∗, c∗ ∈ J∗, we obtain that x ∈ I∗ ∨ J∗.

(2) We have F ∨ G ⊆ F , F ∨ G ⊆ G, so (F ∨ G)∗ ⊆ F ∗ ∩ G∗ = F ∗ ∧ G∗.
Conversely, let x ∈ F ∗ ∧ G∗. There are b ∈ F , c ∈ G with x ≤ b∗, x ≤ c∗, hence
x ≤ b∗ ∧ c∗ = (b ∨ c)∗. Since b ∨ c ∈ F ∩G = F ∨G, we obtain that x ∈ (F ∨G)∗.

(3) and (4) are dual to (1) and (2), respectively. ¤

Consider now the direct product I(A)×F(A). This is a distributive lattice. Let
us define the operation ∗ on I(A)× F(A) by

(I, F )∗ = (F ∗, I∗).

Theorem 3.2. Let A be an Ockham algebra. Then I(A) × F(A) is an Ockham
algebra.

Proof. We only need to check de Morgan laws (1) and (2). Let us compute: ((I, F )∧
(J,G))∗ = (I ∧ J, F ∧G)∗ = ((F ∧G)∗, (I ∧ J)∗) = (F ∗ ∨G∗, I∗ ∨ J∗) = (F ∗, I∗) ∨
(G∗, J∗) = (I, F )∗ ∨ (J,G)∗. The proof for (2) is dual. ¤

Lemma 3.3. Let A be an Ockham algebra. For any x, y ∈ A,
(i) ↓(x ∨ y) = ↓x ∨ ↓y;
(ii) ↓(x ∧ y) = ↓x ∧ ↓y;
(iii) ↑(x ∨ y) = ↑x ∩ ↑y = ↑x ∨ ↑y;
(iv) ↑(x ∧ y) = ↑x ∧ ↑y;
(v) (↑x)∗ = ↓x∗;
(vi) (↓x)∗ = ↑x∗.

Proof. (i)-(iv) are obvious. Further, y ∈ (↑x)∗ iff y ≤ z∗ for some z ≥ x iff y ≤ x∗

iff y ∈ ↓x∗, so (v) holds and (vi) is its dual. ¤

Theorem 3.4. The map f : A → I(A) × F(A) defined by f(x) = (↓x, ↑x) is an
embedding of Ockham algebras.

Proof. Let x, y ∈ A. We compute: f(x ∨ y) = (↓(x ∨ y), ↑(x ∨ y)) = (↓x, ↑x) ∨
(↓y, ↑y) = f(x)∨f(y), and similarly for meets. Further, we have f(x)∗ = (↓x, ↑x)∗ =
((↑x)∗, (↓x)∗) = (↓x∗, ↑x∗) = f(x∗). The injectivity of f is obvious. ¤

Thus, I(A)×F(A) can be regarded as an extension of A. We call it the ideal-filter
extension of A.

Lemma 3.5. Suppose that the Ockham algebra A satisfies the following two as-
sumptions:

(i) A∧ is an ideal and A∨ is a filter;
(ii) x∗ ∨ x∗∗ ∨ y ≥ y∗∗ and x∗ ∧ x∗∗ ∧ y ≤ y∗∗, for every x, y ∈ A.
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Then, for every x ∈ A, a ∈ A∧, b ∈ A∨, I, J ∈ I(A), F, G ∈ F(A), the following
holds.

(iii) The sets ↓a, I ∧ J , I ∨ J and ↓x ∧ I belong to I(A).
(iv) The sets ↑b, F ∨G, F ∧G and ↑x ∨ F belong to F(A).
(v) I∗ ∈ F(A), F ∗ ∈ I(A).

Proof. Recall that I(A) contains ideals that are almost principal in A∧ (not nec-
essarily in A). For every y ∈ A∧ we have ↓y ∩ ↓a = ↓(y ∧ a), which shows that
↓a ∈ I(A).

Clearly, I ∧ J ⊆ A∧. By (i) we also have I ∨ J ⊆ A∧. Since I and J are almost
principal, we have u, v ∈ A∧ with ↓y ∩ I = ↓u and ↓y ∩ J = ↓v. It is not difficult
to check that ↓y ∩ (I ∧ J) = ↓(u ∧ v) and ↓y ∩ (I ∨ J) = ↓(u ∨ v). Thus, I ∧ J ,
I ∨ J ∈ I(A).

Finally, we note that for every y ∈ A∧ we have ↓y ∩ (↓x ∩A∧) = ↓(y ∧ x) and
hence ↓x ∩A∧ ∈ I(A). Now, obviously, ↓x ∧ I = (↓x ∩A∧) ∧ I ∈ I(A).

The proof of (iv) is analogous.
Clearly, I∗ ∈ F(A) and I∗ ⊆ A∨. Let y ∈ A∨. Then y∗ ∈ A∧, so ↓y∗ ∩ I = ↓c,

for some c ∈ I. We claim that ↑y ∩ I∗ = ↑(c∗ ∨ y). If z ∈ ↑(c∗ ∨ y) then clearly
z ∈ ↑y ∩ I∗. Conversely, let z ∈ ↑y ∩ I∗. Then z ≥ y and z ≥ d∗ for some d ∈ I.
Then d ∧ y∗ ∈ ↓y∗ ∩ I, hence d ∧ y∗ ≤ c, which implies that d∗ ∨ y∗∗ ≥ c∗. Since
d∗ ∈ A∨, we have d∗ ≥ d∗∗. By (ii) we obtain that d∗ ∨ y = d∗ ∨ d∗∗ ∨ y ≥ y∗∗ and
hence z ≥ (d∗ ∨ y) ≥ (d∗ ∨ y∗∗) ∨ y ≥ c∗ ∨ y, so z ∈ ↑(c∗ ∨ y).

The proof of F ∗ ∈ I(A) is analogous. ¤

Definition 3.6. Let T(A) be the subset of I(A) × F(A) consisting of all pairs of
the form (↓x ∨ I, ↑x ∧ F ), where x ∈ A, I ∈ I(A), F ∈ F(A).

Theorem 3.7. If A is an Ockham algebra satisfying conditions (i),(ii) in Lemma
3.5, then T(A) is a subalgebra of I(A)× F(A).

Proof. We have

(↓x ∨ I, ↑x ∧ F ) ∧ (↓y ∨ J, ↑y ∧G) = ((↓x ∨ I) ∧ (↓y ∧ J), ↑x ∧ F ∧ ↑y ∧G) .

Since the lattice I(A) is distributive, we obtain

(↓x ∨ I) ∧ (↓y ∨ J) = ↓(x ∧ y) ∨ (↓x ∧ J) ∨ (↓y ∧ I) ∨ (I ∧ J),

↑x ∧ F ∧ ↑y ∧G = ↑(x ∧ y) ∧ (F ∧G).

We set z = x ∧ y, K = (↓x ∧ J) ∨ (↓y ∧ I) ∨ (I ∧ J), H = F ∧G. By Lemma 3.5,
K ∈ I(A), H ∈ F(A), so (↓x∨I, ↑x∧F )∧(↓y∨J, ↑y∧G) = (↓z∨K, ↑z∧H) ∈ T(A).

The proof for joins is analogous.
Finally, (↓x ∨ I, ↑x ∧ F )∗ = ((↑x)∗ ∨ F ∗, (↓x)∗ ∧ I∗) = (↓x∗ ∨ F ∗, ↑x∗ ∧ I∗). By

Lemma 3.5, F ∗ ∈ I(A), I∗ ∈ F(A), hence (↓x ∨ I, ↑x ∧ F )∗ ∈ T(A). ¤

For every a ∈ A we have (↓a, ↑a) = (↓a ∨ ↓0, ↑a ∧ ↑1) ∈ T(A). Thus, the
assignment a 7→ (↓a, ↑a) is a natural embedding A → T(A).
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4. Affine completions in K ∨ S

In this section we assume that A ∈ K ∨ S. Then the conditions (i) and (ii) in
Lemma 3.5 are satisfied, so we have the Ockham algebra T(A).

For any set X ⊆ A let X∧ = X ∩A∧, X∨ = X ∩A∨.
Let us define the binary relation ∼ on T(A) by

(I, F ) ∼ (J,G)
m

I ∧ ↓a = J ∧ ↓a and F ∨ ↑b = G ∨ ↑b for some b ∈ I∧, a ∈ F∨ .
(17)

Since A satisfies the identity (5), we have A∧ ⊆ ↓a for every a ∈ A∨. Conse-
quently, (17) implies that I∧ = (I ∧ ↓a)∧A∧ = (J ∧ ↓a)∧A∧ = J∧, and similarly,
F∨ = G∨. This shows that the relation ∼ is symmetric.

Lemma 4.1. The relation ∼ is a congruence relation on T(A).

Proof. The relation ∼ is clearly reflexive and symmetric. If (I, F ) ∼ (J,G) ∼
(K,H), then

I ∧ ↓a1 = J ∧ ↓a1 and J ∧ ↓a2 = K ∧ ↓a2,

for some a1, a2 ∈ F∨ = G∨ = H∨. Since A∨ is a filter, we have a = a1 ∧ a2 ∈ F∨

and
I ∧ ↓a = J ∧ ↓a = K ∧ ↓a.

This and the dual argument (for filters) show the transitivity of ∼ . Thus, ∼ is an
equivalence. Now we show its compatibility with the operations of T(A).

Let (I, F ), (J,G), (K,H) ∈ T(A), (I, F ) ∼ (J,G), (K,H) = (K0 ∨ ↓z, H0 ∧ ↑z),
for some z ∈ A, K0 ∈ I(A), H0 ∈ F(A). Let a ∈ F∨, b ∈ I∧ such that (17) holds.
Clearly, (I ∨K)∧ = I∧ ∨K∧ = (J ∨K)∧, (F ∨H)∨ = F∨ ∨H∨ = (G ∨H)∨. Let
us set c = z ∨ a. Then c ∈ F∨ ∨H = F∨ ∨H∨ = (F ∨H)∨. We claim that

(I ∨K) ∧ ↓c = (J ∨K) ∧ ↓c . (18)

Since I ∧↓z ⊆ ↓z ⊆ K and I ∧↓a ⊆ J , we have I ∧↓c = (I ∧↓z)∨ (I ∧↓a) ⊆ J ∨K
and also I∧↓c ⊆ (J∨K)∧↓c. Hence, (I∨K)∧↓c = (I∧↓c)∨(K∧↓c) ⊆ (J∨K)∧↓c.
The proof of the inverse inclusion is analogous, so (18) holds.

Further, b ∈ I∧ ⊆ (I ∨ K)∧ and obviously (F ∨ H) ∨ ↑b = (F ∨ ↑b) ∨ H =
(G∨↑b)∨H = (G∨H)∨↑b. This, together with (18) shows that (I, F )∨ (K, H) ∼
(J,G) ∨ (K, H). The proof for meets is similar.

It remains to show that (F ∗, I∗) = (I, F )∗ ∼ (J,G)∗ = (G∗, J∗). We have
b∗ ∈ I∗ and b ∈ A∧, hence b∗ ∈ (I∗)∨. From F ∨ ↑b = G ∨ ↑b we obtain that
F ∗ ∧ ↓b∗ = G∗ ∧ ↓b∗. Dually, we have I∗ ∨ ↑a∗ = J∗ ∨ ↑a∗ and a∗ ∈ (F ∗)∧. ¤

Therefore, we can consider the quotient algebra T(A) = T(A)/ ∼.

Lemma 4.2. Let A ∈ K ∨ S. Then for x ∈ A, I ∈ I(A) and F ∈ F(A) the
following holds:

(i) I∗∗ = I, F ∗∗ ≥ F ;
(ii) (↑x∗ ∧ I∗) ∨ (↑x∗∗ ∧ F ∗∗) ⊆ A∗∗ ∩A∨;
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Proof. By the definitions of I∗ and F ∗ we have

I∗∗ = {x ∈ A | x ≤ a∗∗ for some a ∈ I} ,

F ∗∗ = {x ∈ A | x ≥ a∗∗ for some a ∈ F} .

Since (4) holds in A, for any a ∈ A∧ we have a = a∗∗ and hence I∗∗ = I. To prove
F ∗∗ ⊆ F , take x ∈ F ∗∗. Since x ≥ a∗∗ for some a ∈ F and (3) holds in A, we have
x ≥ a implying x ∈ F . Thus F ∗∗ ⊆ F and F ∗∗ ≥ F .

Let z ∈ (↑x∗ ∧ I∗) ∨ (↑x∗∗ ∧ F ∗∗). Then

z ≥ t = (x∗ ∧ a∗) ∨ (x∗∗ ∧ b∗∗) = (x∗ ∨ x∗∗) ∧ (x∗ ∨ b∗∗) ∧ (a∗ ∨ x∗∗) ∧ (a∗ ∨ b∗∗),

for some a ∈ I, b ∈ F . Clearly, t ∈ A∗∗. Since a∗, b∗∗ and x∗ ∨ x∗∗ belong
to the filter A∨, we also have t ∈ A∨. By Lemma 1.4, A∗∗ ∩ A∨ is a filter, so
z ∈ A∗∗ ∩A∨. ¤

Theorem 4.3. If A ∈ K∨S, then T(A) ∈ K∨S and T(A) ∈ K∨S. Moreover, if
A is a Kleene (Stone) algebra then T(A) and T(A) are Kleene (Stone) algebras.

Proof. It suffices to prove the statements for T(A). Let u, v ∈ A, I, J ∈ I(A) and
F, G ∈ F(A).

To prove that T(A) ∈ K ∨ S, we need to check the identities (3) – (6) for
x = (↓u ∨ I, ↑u ∧ F ), y = (↓v ∨ J, ↑v ∧G).

We have x∗∗ = (↓u∗∗ ∨ I∗∗, ↑u∗∗ ∧F ∗∗). Since (3) holds in A we have ↓u∗∗ ≥ ↓u
and ↑u∗∗ ≥ ↑u. Now Lemma 4.2(i) implies x∗∗ ≥ (↓u ∨ I, ↑u ∧ F ) = x. Thus, (3)
holds in T(A).

Further, using the distributivity, the element x∗ ∧ x∗∗ is equal to

(↓(u∗∗ ∧ u∗) ∨ (↓u∗∗ ∧ F ∗) ∨ (↓u∗ ∧ I∗∗) ∨ (I∗∗ ∧ F ∗), ↑u∗ ∧ ↑u∗∗ ∧ I∗ ∧ F ∗∗).

Clearly, (↓u∗ ∧ I∗∗) ∨ (F ∗ ∧ I∗∗) ≤ I ≤ ↓u ∨ I. Since (4) holds in A we also have
↓(u∗∗ ∧ u∗) ≤ ↓u. By Lemma 3.5(iii) and (v), the ideals F ∗ and ↓u ∧ F ∗ belong to
I(A). Using Lemma 4.2(i) we obtain that F ∗∗∗ = F ∗ and ↓u∗∗∧F ∗ = (↓u∧F ∗)∗∗ =
↓u ∧ F ∗ ≤ ↓u. Thus,

↓(u∗∗ ∧ u∗) ∨ (↓u∗∗ ∧ F ∗) ∨ (↓u∗ ∧ I∗∗) ∨ (I∗∗ ∧ F ∗) ≤ ↓u ∨ I.

By (5) we have u∗ ∧ u∗∗ ≤ w for every w ∈ F ⊆ A∨. By (4), also u∗ ∧ u∗∗ ≤ u.
Hence,

↑u∗∗ ∧ ↑u∗ ∧ I∗ ∧ F ∗∗ ≤ ↑(u∗∗ ∧ u∗) ≤ ↑u ∧ F .

Thus (4) holds in T(A).
Since ↓u∧↓u∗ ≤ A∧ and ↑u∧↑u∗ ≤ A∨ (and, of course, I, F ∗ ≤ A∧), we obtain

x ∧ x∗ = ((↓u ∨ I) ∧ (↓u∗ ∨ F ∗), ↑u ∧ F ∧ ↑u∗ ∧ I∗) ≤ (A∧,A∨).

Dually, y ∨ y∗ ≥ (A∧,A∨), hence (5) holds in T(A).
Finally, we prove (6). The element x ∨ y∗ ∨ y∗∗ is equal to

(↓u ∨ I ∨ ↓v∗ ∨G∗ ∨ ↓v∗∗ ∨ J∗∗, (↑u ∧ F ) ∨ (↑v∗ ∧ J∗) ∨ (↑v∗∗ ∧G∗∗)).
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We need to show that this element is greater than or equal to x∗∗ = (↓u∗∗ ∨
I∗∗, ↑ u∗∗ ∧ F ∗∗). By Lemma 4.2(i), I∗∗ = I. Since (6) holds in A we have
↓u ∨ ↓v∗ ∨ ↓v∗∗ ≥ ↓u∗∗. Thus,

↓u ∨ I ∨ ↓v∗ ∨G∗ ∨ ↓v∗∗ ∨ J∗∗ ≥ ↓u∗∗ ∨ I∗∗ .

By Lemma 4.2(ii) we have

(↑u ∧ F ) ∨ (↑v∗ ∧ J∗) ∨ (↑v∗∗ ∧G∗∗) ⊆ (↑u ∧ F ) ∩A∗∗ ∩A∨

⊆ (↑u ∧ F ) ∩A∗∗ ⊆ (↑u ∧ F )∗∗ = ↑u∗∗ ∧ F ∗∗,

which completes the proof of T(A) ∈ K ∨ S.
Further, assume that A ∈ K. We need to check the identity (7) for x = (↓u ∨

I, ↑u∧F ). By Lemma 4.2(i) we have I = I∗∗. Since (7) holds in A, we have u = u∗∗

and F = F ∗∗. Thus

x = (↓u ∨ I, ↑u ∧ F ) = (↓u∗∗ ∨ I∗∗, ↑u∗∗ ∧ F ∗∗) = x∗∗

implying T(A) ∈ K.
Finally, suppose that A ∈ S. We need to show that the identity (8) holds for

x = (↓u ∨ I, ↑u ∧ F ). Since (8) holds in A we have u ∧ u∗ = 0 and I(A) = {↓0}.
Now we compute:

x ∧ x∗ = ((↓u ∨ I) ∧ (↓u∗ ∨ F ∗), ↑u ∧ F ∧ ↑u∗ ∧ I∗)
= (↓(u ∧ u∗) ∨ (↓u ∧ F ∗) ∨ (↓u∗ ∧ I) ∨ (I ∧ F ∗), ↑(u ∧ u∗) ∧ F ∧ I∗)
= (↓0, ↑0) .

Hence T(A) ∈ S. ¤

For (I, F ) ∈ T(A), let (I, F ) denote the ∼-equivalence class containing (I, F ).
Lemma 4.4.

(i) The assignment x 7→ (↓x, ↑x) is an embedding A → T(A);
(ii) If x ∈ A∨ then (↓1, ↑x) ∼ (↓x, ↑x);
(iii) T(A)

∨
is isomorphic to the lattice F(A).

Proof. To prove (i), suppose that x, y ∈ A with (↓x, ↑x) ∼ (↓y, ↑y). Then (17)
implies x ∧ a = y ∧ a and x ∨ b = y ∨ b for some a ∈ ↑x ∩A∨, b ∈ ↓x ∩A∧. Hence
y ∧ a = x and y ∨ b = x implying x = y.

(ii) follows directly from (17), since we can take a = x.
The fact that F(A) is a sublattice of F(A) follows from Lemma 3.5. For every

G ∈ F(A) we have (↓1, G) = (↓1 ∨A∧, ↑ 1 ∧G) ∈ T(A) and (↓1, G)∗ = (G∗, ↑0) ≤
(↓1, G), hence (↓1, G) ∈ T(A)

∨
. The assignment G 7→ (↓1, G) is clearly a lattice

homomorphism, it remains to show its bijectivity.
Every element of T(A)

∨
is of the form (↓u ∨ I, ↑u ∧ F ) ∨ (↓u ∨ I, ↑u ∧ F )

∗
for

some u ∈ A, I ∈ I(A) and F ∈ F(A). Using the distributivity and the inequality
(5) it is easy to calculate that

(↓ u ∨ I, ↑ u ∧ F ) ∨ (↓ u∗ ∨ F ∗, ↑ u∗ ∧ I∗) = (↓ v, H) ,
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where v = u ∨ u∗ ∈ A∨ and H =↑ v ∧ (↑ u∗ ∨ F ) ∧ (↑ u ∨ I∗) ∧ (F ∨ I∗) ∈ F(A).
Since v ∈ H = H∨, by (17), we have (↓ v,H) ∼ (↓ 1,H). Hence, our assignment is
surjective.

Assume, that (↓ 1, G1) = (↓ 1, G2), for some G1, G2 ∈ F(A). Then, by (17),
there exists t ∈↓ 1 ∩ A∧ = A∧ such that G1∨ ↑ t = G2∨ ↑ t. By (5) we have
Gi ⊆↑ t, i = 1, 2. Thus Gi∨ ↑ t = Gi, i = 1, 2 implying G1 = G2, which completes
the proof. ¤

Now we are ready to prove our second main theorem, which solves Problem 1.2
for local polynomial functions on A ∈ K ∨ S. The equivalence of (ii) and (iii) also
shows that our construction is, in some sense, the best possible.

Theorem 4.5. Let A ∈ K ∨ S. For f : An → A the following statements are
equivalent:

(i) f is a local polynomial function;
(ii) f can be interpolated by a polynomial of T(A);
(iii) f can be interpolated by a polynomial of some extension B ∈ K ∨ S of A.

Proof. The implication (ii)=⇒(iii) follows from Theorem 4.3 and Lemma 4.4. Sup-
pose that (iii) holds. Every polynomial of B preserves the uncertainty relation
and all congruences on B. Since Ockham algebras have the congruence extension
property, every congruence on A extends to a congruence on B, so f must be
compatible. Since B ∈ K ∨ S, the uncertainty order on A is a restriction of the
uncertainty order on B, so f must be uncertainty preserving. By Theorem 2.4, f
is local polynomial function.

For the implication (i)=⇒(ii) due to Theorem 2.4 we just need to show that
every function F̂ can be interpolated by a polynomial of T(A). So, let F ∈ F(A).
We claim that F̂ is interpolated by the polynomial g(t) = (↓1, F ) ∨ t ∨ t∗. Clearly,
(↓1, F ) = (↓1, ↑1 ∧ F ) ∈ T(A). Let x ∈ A. We compute in T(A):

(↓1, F ) ∨ (↓x, ↑x) ∨ (↓x∗, ↑x∗) = (↓1, F ∩ ↑x ∩ ↑x∗) = (↓1, ↑F̂ (x)).

Since F̂ (x) ∈ A∨, we have (↓1, ↑F̂ (x)) ∼ (↓F̂ (x), ↑F̂ (x)), by Lemma 4.4(ii). By
identifying every y ∈ A with (↓y, ↑y) we obtain that g(x) = F̂ (x). ¤

For compatible functions (which are not local polynomial functions) on Stone
and Kleene algebras the Problems 1.1 and 1.2 are still open.

If A∨ does not contain nontrivial Boolean intervals, then every compatible func-
tion of A preserves the uncertainty order. (This was proved in [5] for Stone algebras,
in [4] for Kleene algebras and in [8] for K∨S-algebras.) Thus, we have the following
consequence.

Theorem 4.6. If A ∈ K ∨ S is such that A∨ does not contain nontrivial Boolean
intervals, then for any function f on A, the following conditions are equivalent.

(i) f is compatible;
(ii) f is a composition of polynomials and the functions F̂ , where F ∈ F(A);
(iii) f can be interpolated by a polynomial of T(A).
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To justify the title of this Section, we prove the following result.

Theorem 4.7. If A ∈ K ∨ S is such that A∨ does not contain nontrivial Boolean
intervals, then T(A) is affine complete.

Proof. If A∨ does not contain a nontrivial Boolean interval, then the same is true for
the lattice F(A). (See [9], Lemma 3.8.) By Lemma 4.4(iii), T(A)

∨
does not contain

a nontrivial Boolean interval. Then, by [8], every compatible function on T(A) is
uncertainty-preserving. By Theorem 2.4, every such function is a composition of
polynomials and functions of the type F̂ . However, T(A)

∨
has a smallest element

(namely (↓1,A∨)), so every almost principal filter of T(A)
∨

is principal and all
functions F̂ are polynomials. ¤

If A∨ does contain a nontrivial Boolean interval [u, v], then the function f(x) =
((x∨u)∧v)′ is compatible but not uncertainty-preserving. (Here ′ denotes the com-
plement in [u, v].) Our conjecture is that every compatible function is a composition
of local polynomial functions and the functions of the above type.

It is still possible that every A ∈ K∨S has a CEP-extension B with the property
that every compatible function on A can be interpolated by a polynomial of B.
However, if A∨ contains a nontrivial Boolean interval, such extension cannot be
found inside K ∨ S (by Theorem 4.5).
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