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Abstract

For any set X and any n ≥ 3 we define a topological space Ln(X)
and characterize its closed subspaces if |X| ≤ ℵ1. As an application
we obtain a characterization of congruence lattices of algebras in some
varieties of lattices. The spaces Ln(X) are close to Boolean spaces,
but they are not Hausdorff.
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1 Introduction

The motivation for this paper comes from universal algebra. The general
problem is as follows: Characterize congruence lattices of algebras belonging
to a variety (equational class) V . There are rather few relevant classes V for
which we have a satisfactory answer.

It seems that in many cases topological tools are convenient for such a
description. If Con(A) (the congruence lattice of an algebra A) is distributive
then Con(A) is isomorphic to the lattice O(T ) of all open subsets of some
topological space T . (See [2],[1] or [6].) Thus, if the class V is a congruence
distributive variety, the following strategy was proposed in [6]:

1. For every set X describe a topological space T (X) such that O(T (X)) ∼=
Con(F (X)), where F (X) denotes the free algebra in V with X as the set of
free generators.

2. Describe closed subspaces of the spaces T (X).
The general result is that lattices Con(A) (for A ∈ V ) are precisely the

lattices O(Y ) (for closed subspaces Y of some T (X)). Let us remark that
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if we have a good knowledge of subdirectly irreducible algebras in V then
the explicit definition of the spaces T (X) is not a problem. Hence, the orig-
inal algebraic problem is transferred to the topological problem of abstract
characterization of closed subspaces of T (X).

As an example, consider the class B of Boolean algebras. Then the pro-
posed topological representation is in fact the well-known Stone duality and
T (X) is {0, 1}X (the power space of the 2-element discrete space). The closed
subspaces of {0, 1}X are precisely all Boolean (compact Hausdorff zerodimen-
sional) spaces. Hence, a lattice L is isomorphic to Con(A) for some Boolean
algebra A if and only if L ∼= O(Y ) for some Boolean space Y .

In this paper we consider the case not far from Boolean algebras, which
is however much more complicated. For n ≥ 3 let M01

n denote the equational
class generated by the (n + 2)-element bounded lattice Mn depicted below.
(That is, we consider the constants 0, 1 as nullary operations.)
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The spaces T (X) corresponding to varieties M01
n were constructed in [6].

In this paper we denote them Ln(X). (For the definition see the next section
and the remark in section 4.) Our main result is a characterization of closed
subspaces of Ln(X) for |X| ≤ ℵ1. It turns out that this characterization does
not depend on n, which in particular means that any Ln(X) is homeomorphic
to a closed subspace of L3(X). In the last section we discuss the algebraic
consequences of these results.

We use the topological terminology from [4] and [3]. In some places we
find it convenient to work with nets, cluster points and limit points. The
closure of a set A is denoted by cl(A). Our compact spaces need not be
Hausdorff. Consequently, compact sets need not be closed. The following
assertion is a simple exercise.
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Lemma 1.1 Let C be a compact subset of a topological space T and W ⊆ C.
Let w ∈ cl(W ) \ C. Then there is u ∈ C such that for every open sets
A, B ⊆ C, u ∈ A and w ∈ B implies A ∩ B ∩ W 6= ∅. Moreover, there is a
net N in W such that N converges to both u and w.

Our reference books for the lattice theory and universal algebra are [2]
and [5]. If f is a function then dom(f) and rng(f) stand for its domain and
range, respectively. If Y ⊆ dom(f) then f � Y means the restriction of f to
Y .

2 The spaces Ln(X) and Ln(X)

Let us consider the set Mn = {0, 1, a1, . . . , an} as a discrete topological space.
For any set X the usual power MX

n is a compact Hausdorff zerodimensional
space.

Let Πn be the set of all permutations π on Mn such that π(0) = 0,
π(1) = 1. Let R0 be the set of all functions r : X0 → {0, 1} such that X0 is
a finite subset of X. Let Rn be the set of all functions r : X0 → Mn such
that rng(r) contains at least three of ai (i = 1, . . . , n). For r ∈ R0 we define

Kr = {f ∈ MX
n | r−1(0) ⊆ (πf)−1(0, a1),

r−1(1) ⊆ (πf)−1(1, a2) for some π ∈ Πn}.

For r ∈ Rn we set

Kr = {f ∈ MX
n | r = πf � X0 for some π ∈ Πn}.

It is clear that every Kr is a clopen (and hence compact) subset of MX
n . The

following assertion is obvious.

Lemma 2.1 If r, s ∈ R0 ∪ Rn, r ⊆ s, then Ks ⊆ Kr. If f ∈ Kr and
g � dom(r) = πf � dom(r) for some π ∈ Πn then g ∈ Kr.

Now we define the space Ln(X). The points of Ln(X) are all maps f :
X → Mn such that f(X) ⊆ {0, 1} or |rng(f) ∩ {a1, . . . , an}| ≥ 3. For every
r ∈ R0 ∪ Rn we denote Gr = Kr ∩ Ln(X). Let us endow Ln(X) with the
topology whose base of open set is G = {Gr | r ∈ R0 ∪Rn}. The correctness
of this definition is assured by the following assertion.
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Lemma 2.2 For any Gr, Gs ∈ G, the set Gr ∩ Gs is a union of some sets
from G. Hence, G is indeed a base of some topology on Ln(X).

P r o o f. Let f ∈ Gr ∩ Gs. Suppose first that rng(f) ⊆ {0, 1}. This is
only possible if r, s ∈ R0, r = f � dom(r), s = f � dom(s). Choose a finite
set X0 ⊆ X with X0 ⊇ dom(r) ∪ dom(s) and let t = f � X0. Clearly,
f ∈ Gt ⊆ Gr ∩ Gs.

Now let rng(f) 6⊆ {0, 1}. Choose a finite set X0 ⊆ X such that X0 ⊇
dom(r) ∪ dom(s) and f(X0) = rng(f). Let t = f � X0. Then t ∈ Rn and
f ∈ Gt. For every g ∈ Gt there is π ∈ Πn with g � X0 = πf � X0, which by
2.1 implies that g ∈ Gr ∩ Gs.

Lemma 2.3 The space Ln(X) is compact. Every Gr ∈ G is compact. If
r ∈ Rn, then Gr is clopen.

P r o o f. Suppose that the set Gr ∈ G is covered by sets Gri
∈ G, i ∈ I. We

claim that the set Kr is covered by the sets Kri
. Let f ∈ Kr. If f ∈ Ln(X)

then clearly f ∈ Gri
⊆ Kri

for some i ∈ I. Let f ∈ Kr \ Ln(X). Then
necessarily r ∈ R0 and rng(f) ⊆ {0, 1, ai, aj} for some ai, aj ∈ Mn. Let
us define g : X → {0, 1} by g(x) = 0 if f(x) ∈ {0, ai} and g(x) = 1 if
f(x) ∈ {1, aj}. Then f ∈ Kr implies g ∈ Kr and hence g ∈ Gr. By our
assumption, there exists i ∈ I with g ∈ Gri

, which implies f ∈ Kri
. Hence,

the set Kr is covered by Kri
. Since Kr is compact, there is a finite set I0 ⊆ I

with Kr ⊆
⋃

{Kri
| i ∈ I0}. Then Gr = Kr ∩ Ln(X) ⊆

⋃

{Gri
| i ∈ I0},

which shows that Gr is compact.
The compactness of the whole Ln(X) can be shown by exactly the same

argument. For the last part of our assertion, let r ∈ Rn, X0 = dom(r) and
let f ∈ Ln(X) \ Gr. We wish to find Gs ∈ G with f ∈ Gs and Gs ∩ Gr = ∅.
Choose a finite set X1 ⊆ X with X1 ⊇ X0 and f(X1) = f(X) and set
s = f � X1. Then clearly s ∈ R0 ∪ Rn and f ∈ Gs. Let h ∈ Gs. If s ∈ R0,
then h(X0) ⊆ h(X1) ⊆ {0, 1, ai, aj} for some ai, aj ∈ Mn. Since r ∈ Rn, such
h cannot belong to Gr. If s ∈ Rn then πh � X1 = s = f � X1 for some
π ∈ Πn. Then also πh � X0 = f � X0. Since f /∈ Gr, we have πh /∈ Gr and
hence h /∈ Gr.

Lemma 2.4 {Gr ∈ G | r ∈ R0, |dom(r)| ≤ 2} is a subbase for the space
Ln(X).
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P r o o f. Let Gr ∈ G, dom(r) = X0. Let S be the collection of all s ∈ R0 with
dom(s) ⊆ X0, |dom(s)| ≤ 2 and Gr ⊆ Gs. Then clearly Gr ⊆

⋂

{Gs | s ∈ S}.
We prove the other inclusion. Let f ∈ Ln(X) \ Gr. We distinguish several
cases. In every case we find s ∈ S with f /∈ Gs.

1. Let r(x), f(x) ∈ {0, 1} and r(x) 6= f(x) for some x ∈ X0. We set
s = r � {x}.

2. Let r(x) = r(y) ∈ {0, 1}, f(x) = ai, f(y) = aj, i 6= j for some
x, y ∈ X0. We set s = r � {x, y}.

3. Let r(x) = 0, r(y) = 1, f(x) = f(y) = ai for some x, y ∈ X0. We set
s = r � {x, y}.

The above three cases cover the case r ∈ R0. Now we handle the case
r ∈ Rn

4. Let r ∈ Rn and r(x) = 0, f(x) = ai for some x ∈ X0. (The case
r(x) = 1 is similar.) Choose y ∈ X0 such that r(y) ∈ {a1, . . . , an}. We define
s : {x, y} → {0, 1} as follows. If f(y) = f(x) or f(y) = 0, then s(x) = 0 and
s(y) = 1. If f(y) /∈ {f(x), 0} then s(x) = s(y) = 0.

5. Let r ∈ Rn, r(x) = ai, f(x) ∈ {0, 1} for some x ∈ X0. We define
s : {x} → {0, 1} such that s(x) 6= f(x).

6. Let r(x) = r(y) = ai, f(x) = am 6= al = f(y) for some x, y ∈ X0. We
define s : {x, y} → {0, 1} by s(x) = s(y) = 0.

7. Let f(x) = f(y) = ai, r(x) = am 6= al = r(y) for some x, y ∈ X0. We
define s : {x, y} → {0, 1} by s(x) = 0, s(y) = 1.

The space Ln(X) is not T0. For f, g ∈ Ln(X) we write f ∼ g if f = πg
for some permutation π ∈ Πn. If f ∼ g then the points f, g ∈ Ln(X)
are topologically indistinguishable. (If an open set contains one of them, it
contains both.) It is therefore reasonable to consider the space Ln(X) whose
points are ∼-equivalence classes (with f denoting the class containing f) and
the base of open sets is G = {G | G ∈ G}, where G = {f | f ∈ G}.

Lemma 2.5 Let f, g ∈ Ln(X), f 6∼ g, rng(f) 6⊆ {0, 1}. Then there is r ∈ Rn

with f ∈ Gr, g /∈ Gr.

P r o o f. Since Πn is finite, there is a finite set Y ⊆ X such that f � Y 6=
πg � Y for every π ∈ Πn. Choose a finite set X0 ⊆ X such that Y ⊆ X0 and
rng(f) ⊆ f(X0) and set r := f � X0.

Because of the application to congruence lattices, we would like to have
an abstract characterization of closed subspaces of Ln(X). The space Ln(X)
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is a disjoint union of two sets H0 = {f | f ∈ {0, 1}X}, Hn = Ln(X) \ H0.
Similarly, every Z ⊆ Ln(X) is composed of two subspaces Z0 = Z ∩ H0 and
Zn = Z ∩ Hn.

It is easy to see that H0 is homeomorphic to {0, 1}X with the usual
product topology. (We consider {0, 1} as a discrete space.) Hence, it is
compact, Hausdorff, zerodimensional.

Lemma 2.6 Hn is zerodimensional.

P r o o f. It suffices to prove that Hn∩Gr is closed in Hn for every r ∈ R0∪Rn.
Let f ∈ Hn\Gr. By 2.5, for every g ∈ Gr there is a clopen set Cg with f ∈ Cg,
g /∈ Cg. The sets Ln(X) \ Cg cover the compact set Gr. Hence, there are
g1, . . . , gk ∈ Gr with Gr ⊆ Ln(X) \ (Cg1

∩ . . . ∩ Cgk
). For the open set

C = Cg1
∩ . . . Cgk

we have f ∈ C, C ∩ Gr = ∅.

Lemma 2.7 Let Z = Z0 ∪ Zn be a closed subspace of Ln(X).

(i) Z is compact and has a base of compact open sets.

(ii) Z0 is a closed subspace of Z.

(iii) Z0 and Zn are Hausdorff, zerodimensional.

(iv) If f ∈ Zn, g ∈ Z\{f} then there exists a clopen set G with f ∈ G ⊆ Zn,
g /∈ G.

(v) If f, g, h ∈ Z are mutually different, then there exist open sets A, B, C
such that f ∈ A, g ∈ B, h ∈ C and A ∩ B ∩ C = ∅.

P r o o f. It is easy to see that the properties (i)–(v) are preserved by closed
subspaces. Thus, it suffices to prove them for Z = Ln(X). In this case, (i)
follows from 2.3 and (ii) and (iv) from 2.5. (Notice that Gr∩Z0 = ∅ whenever
r ∈ Rn.) Further, Zn is zerodimensional by 2.6 and Hausdorff by 2.5. For
Z0, (iii) was discussed before 2.6. Finally, the proof of (v) is identical with
the proof of 5.5 in [6].

The compactness of Z and (iv) have the following consequence.

Lemma 2.8 Suppose that f ∈ Zn, W ⊆ Z is closed and f /∈ W . Then there
exists a clopen set G with f ∈ G ⊆ Zn, G ∩ W = ∅.
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If X is infinite, then Ln(X) is not Hausdorff. In fact, no two points of H0

can be separated. However, (v) says that every three points can be separated.
It implies that if a net N converges to two distinct limit points, then N has
no other cluster points.

As a simple example of a space Z satisfying (i)–(v) of 2.7 one may consider
a discrete sequence converging to two different limit points.

3 The embedding theorem

Throughout this section we assume that a space Z = Z0∪Zn satisfies (i)–(v)
of 2.7. We wish to construct an embedding Z → Ln(X) for some X.

Lemma 3.1 For every S ⊆ Z0 which is clopen in Z0 and every W ⊆ Z with
cl(W ) ∩ S = ∅ there is a compact open set C ⊆ Z with C ∩ Z0 = S and
C ∩ W = ∅.

P r o o f. Since S is open in Z0, there is an open set C ′ with C ′ ∩ Z0 = S
and C ′ ∩ cl(W ) = ∅. By (i), C ′ =

⋃

{Cα | α ∈ I}, where all Cα are compact
open. Since S is closed, it is compact and hence S ⊆ Cα1

∪ . . .∪Cαm
for some

α1, . . . , αm ∈ I. The set C = Cα1
∪ . . . ∪ Cαm

has the required properties.

Lemma 3.2 For every compact open set A ⊆ Z, the set A∩Zn is closed in
Zn.

P r o o f. The same as the proof of 2.6, using (iv) instead of 2.5.

Lemma 3.3 If C is compact open and Z0 ∩ C = ∅ or Z0 ⊆ C then C is
clopen.

P r o o f. The case Z0 ∩ C = ∅ is an easy consequence of (iv). Let Z0 ⊆ C.
By 3.2, Z \ C is open in Zn. Since Zn is open in Z, the set Z \ C is open in
Z and hence C is closed.

Lemma 3.4 Let A ⊆ Z be clopen and B ⊆ Z open compact. Then A ∩ B
is open compact. Moreover, if A ⊆ Zn then A ∩ B is clopen.
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P r o o f. Since A is closed and B compact, A∩B is obviously compact. By
3.2 we have cl(B) ⊆ B ∪ Z0. If A ⊆ Zn then cl(A ∩ B) ⊆ cl(A) ∩ cl(B) ⊆
A ∩ (B ∪ Z0) = A ∩ B.

Lemma 3.5 Let B1, B2, B3, B4 be disjoint subsets of Z0 such that B1∪B2∪
B3 ∪ B4 = Z0. Let C12, C13, C14, C23, C24, C34 be compact open subsets of Z
such that Cij ∩ Z0 = Bi ∪ Bj. Then the set W = C12 ∩ . . . ∩ C34 is closed.

P r o o f. It is easy to check that W ∩Z0 = ∅. Suppose that W is not closed
and w ∈ cl(W ) \ W . By 3.2, W is closed in Zn, hence w ∈ Z0. Without
loss of generality, w ∈ B1. Then w ∈ cl(W ) \ C23. By 1.1 there is v ∈ C23

and a net N in W converging to both v and w. From (v) it follows that
N has no other cluster point in Z than v and w. Now, either v ∈ B2 or
v ∈ B3. Consequently, either C34 or C24 contains no cluster point of N ,
which contradicts the compactness.

We wish to construct a set X and an embedding Z → Ln(X). It turns out
that we are able to do it if the Boolean space Z0 contains at most ℵ1 clopen
sets. (Equivalently, Z0 is homeomorphic to a closed subspace of {0, 1}ℵ1.)
Thus, in the sequel we assume that B = {Bα | α ∈ I} with |I| ≤ ℵ1 is the
family of all clopen subsets of Z0.

By 3.1, there are compact open sets Cα
0 , Cα

1 such that Cα
0 ∩ Z0 = Bα,

Cα
1 ∩ Z0 = Z0 \ Bα. By 3.3 the set Z \ (Cα

0 ∪ Cα
1 ) is compact clopen, so we

can assume that Cα
0 ∪ Cα

1 = Z. We denote Dα = Cα
0 ∩ Cα

1 . Hence Dα ⊆ Zn.
In general, Dα 6= ∅.

The next lemma contains the core of our construction. It claims the
existence of some sets E{α,β}, F{α,β} indexed by two-element subsets of I.
(For simplification, we write Eαβ, Fαβ.)

Lemma 3.6 There are families of compact open sets {Eαβ | α, β ∈ I, α 6=
β}, {Fαβ | α, β ∈ I, α 6= β} such that the following conditions are satisfied
for every distinct α, β, γ ∈ I:

(1) Eαβ ∩ Z0 = ((Cα
0 ∩ Cβ

0 ) ∪ (Cα
1 ∩ Cβ

1 )) ∩ Z0;

(2) Fαβ ∩ Z0 = ((Cα
0 ∩ Cβ

1 ) ∪ (Cα
1 ∩ Cβ

0 )) ∩ Z0;

(3) Eαβ ∩ Fαβ ∩ Dα ∩ Dβ = ∅;
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(4) Eαβ ∪ Fαβ = Z;

(5) Eαβ ∩ Eβγ ∩ Dα ∩ Dβ ∩ Dγ ⊆ Eαγ ;

(6) Fαβ ∩ Fβγ ∩ Dα ∩ Dβ ∩ Dγ ⊆ Eαγ .

P r o o f. Notice that (3),(4) and (5) imply

(7) Eαβ ∩ Fβγ ∩ Dα ∩ Dβ ∩ Dγ ⊆ Fαγ .

We proceed by induction. Suppose that I is well ordered of the type at
most ℵ1. Let δ ∈ I and suppose that we have constructed Eαβ, Fαβ for
every α, β < δ and (1)-(7) are satisfied whenever α, β, γ < δ. The set {α ∈
I | α < δ} is countable and can be arranged as a sequence {α0, α1, . . .}. We
will define Eαiδ, Fαiδ by induction on i. Suppose that k ∈ ω and we have
defined Eαiδ, Fαiδ for all i < k. Thus, our induction hypothesis is that (1)-
(7) are true whenever α, β, γ < δ or max{α, β, γ} = δ and {α, β, γ} \ {δ} ⊆
{α0, α1, . . . , αk−1}.

For every i < k denote
Wi = ((Eαiδ ∩ Eαiαk

) ∪ (Fαiδ ∩ Fαiαk
)) ∩ Dαi ∩ Dαk ∩ Dδ,

Vi = ((Eαiδ ∩ Fαiαk
) ∪ (Fαiδ ∩ Eαiαk

)) ∩ Dαi ∩ Dαk ∩ Dδ.
Further, let B1 = ((Cδ

0 ∩Cαk

1 )∪ (Cαk

0 ∩Cδ
1))∩Z0, B2 = ((Cδ

0 ∩Cαk

0 )∪ (Cαk

1 ∩
Cδ

1)) ∩ Z0.
Claim Vi ∩ Wj = cl(Vi) ∩ B2 = cl(Wj) ∩ B1 = ∅ for every i, j < k.
Proof of the claim. Denote D = Dαi ∩ Dαj ∩ Dαk ∩ Dδ. The equality

Vi ∩ Wj = ∅ requires to show the following:

(i) (Eαiαk
∩ Fαiδ) ∩ (Eαjαk

∩ Eαjδ) ∩ D = ∅;

(ii) (Fαiαk
∩ Eαiδ) ∩ (Eαjαk

∩ Eαjδ) ∩ D = ∅;

(iii) (Eαiαk
∩ Fαiδ) ∩ (Fαjαk

∩ Fαjδ) ∩ D = ∅;

(iv) (Fαiαk
∩ Eαiδ) ∩ (Fαjαk

∩ Fαjδ) ∩ D = ∅.

This is clear if i = j because (3) in our induction hypothesis implies Eαiδ ∩
Fαiδ ∩ D = Eαiαk

∩ Fαiαk
∩ D = ∅. Suppose that i 6= j. By (3), (5) and (7)

in our induction hypothesis we have (Eαjδ ∩ Fαiδ) ∩ (Eαiαk
∩ Eαjαk

) ∩ D ⊆
Fαiαj

∩ Eαiαj
∩ D = ∅, hence (i) holds. The argument for (ii), (iii) and (iv)

is analogous.
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Next we prove that cl(Wi) ∩ B1 = ∅. (The proof of cl(Vi) ∩ B2 = ∅ is
similar.) Let z ∈ B1. We have either z ∈ Cαi

0 or z ∈ Cαi

1 , so we distinguish
four cases.

a) Let z ∈ Cαi

0 ∩ Cδ
0 ∩ Cαk

1 . By (1) and (2), z belongs to the open
set Eαiδ ∩ Fαiαk

. Since Eαiδ is disjoint from Fαiδ ∩ Dαi ∩ Dδ and Fαiαk

is disjoint from Eαiαk
∩ Dαi ∩ Dαk , the set Eαiδ ∩ Fαiαk

is disjoint from
(Eαiαk

∩ Dαi ∩ Dαk) ∪ (Fαiδ ∩ Dαi ∩ Dδ) ⊇ Wi, hence z /∈ cl(Wi).
b) Let z ∈ Cαi

0 ∩ Cαk

0 ∩ Cδ
1 . Similarly as above z belongs to Eαiαk

∩ Fαiδ

and this open set is disjoint from (Fαiαk
∪Eαiδ)∩Dαi ∩Dαk ∩Dδ ⊇ Wi, hence

z /∈ cl(Wi).
c) If z ∈ Cαi

1 ∩Cαk

0 ∩Cδ
1 then z ∈ Eαiδ ∩Fαiαk

and Eαiδ ∩Fαiαk
∩Wi = ∅,

hence z /∈ cl(Wi).
d) If z ∈ Cαi

1 ∩Cαk

1 ∩Cδ
0 then z ∈ Fαiδ ∩Eαiαk

and Fαiδ ∩Eαiαk
∩Wi = ∅,

hence z /∈ cl(Wi). This completes the proof of the claim.
Now we continue the proof of 3.6. Let W = W0 ∪ . . . ∪ Wk−1, V =

V0 ∪ . . . ∪ Vk−1. As a consequence of the claim we obtain that V ∩ W =
cl(V )∩B2 = cl(W )∩B1 = ∅. By 3.1 there are compact open sets E ′

αkδ, F ′
αkδ

such that E ′
αkδ ∩ Z0 = B2, F ′

αkδ ∩ Z0 = B1, E ′
αkδ ∩ V = ∅, F ′

αkδ ∩ W = ∅. By
3.2, for every i < k the sets Wi ∩ Zn and Vi ∩ Zn are closed in Zn. Hence,
cl(W ) ⊆ W ∪ Z0, cl(V ) ⊆ V ∪ Z0. Since Z0 = B1 ∪ B2 and cl(W ) ∩ B1 =
cl(V ) ∩ B2 = ∅, we have cl(W ) ⊆ W ∪ B2 ⊆ W ∪ E ′

αkδ, cl(V ) ⊆ V ∪ B1 ⊆
V ∪ F ′

αkδ. The sets cl(V ), cl(W ), E ′
αkδ and F ′

αkδ are compact, thus the sets
E ′′

αkδ = cl(W ) ∪ E ′
αkδ = W ∪ E ′

αkδ and F ′′
αkδ = cl(V ) ∪ F ′

αkδ = V ∪ F ′
αkδ are

compact. Since V and W are open, E ′′
αkδ and F ′′

αkδ are open sets. By 3.3 and
3.5, the sets P = Z \ (E ′′

αkδ ∪ F ′′
αkδ) and Q = E ′′

αkδ ∩ F ′′
αkδ ∩ Dαk ∩ Dδ are

clopen. (In using 3.5, let the sets Z0 ∩ Cαk

l ∩ Cδ
m, l, m ∈ {0, 1}, play the role

of B1, . . . , B4.) We set Eαkδ = E ′′
αkδ, Fαkδ = (F ′′

αkδ \ Q) ∪ P . Clearly, Eαkδ

and Fαkδ are compact open sets. We need to show that (1)-(6) remain valid.
We have E ′

αkδ ∩ Z0 = B2, F ′
αkδ ∩ Z0 = B1. Since Wi ∩ Z0 ⊆ Dδ ∩ Z0 = ∅

for every i < k, we have W ∩ Z0 = ∅ and similarly V ∩ Z0 = ∅. Hence,
E ′′

αkδ ∩ Z0 = B2, F ′′
αkδ ∩ Z0 = B1. Since P ∩ Z0 = Q ∩ Z0 = ∅, we also have

Eαkδ ∩ Z0 = B2 and Fαkδ ∩ Z0 = B1, hence (1) and (2) hold.
Further, Eαkδ ∩ P = ∅, hence Eαkδ ∩ Fαkδ ∩ Dαk ∩ Dδ = E ′′

αkδ ∩ (F ′′
αkδ \

Q)∩Dαk ∩Dδ = (E ′′
αkδ ∩F ′′

αkδ ∩Dαk ∩Dδ) \Q = Q \Q = ∅, which shows (3).
Next, for every z ∈ Z we have either z ∈ P ⊆ Fαkδ or z ∈ E ′′

αkδ = Eαkδ

or z ∈ F ′′
αkδ \ E ′′

αkδ ⊆ F ′′
αkδ \ Q ⊆ Fαkδ. Hence, (4) is valid.

To prove (5) and (6) we have to show the following inclusions for every
i < k:
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(5a) Eαiαk
∩ Eαiδ ∩ D ⊆ Eαkδ;

(5b) Eαiαk
∩ Eαkδ ∩ D ⊆ Eαiδ;

(5c) Eαiδ ∩ Eαkδ ∩ D ⊆ Eαiαk
;

(6a) Fαiαk
∩ Fαiδ ∩ D ⊆ Eαkδ;

(6b) Fαiαk
∩ Fαkδ ∩ D ⊆ Eαiδ;

(6c) Fαiδ ∩ Fαkδ ∩ D ⊆ Eαiαk
,

where D = Dαi ∩ Dαk ∩ Dδ. Obviously, Wi ⊆ E ′′
αkδ = Eαkδ, hence (5a) and

(6a) hold. Further, Vi ⊆ F ′′
αkδ. Since Vi ∩ W = ∅ and Vi ∩ E ′

αkδ = ∅, we have
Vi ∩ E ′′

αkδ = ∅, which implies Vi ∩ Q = ∅, hence Vi ⊆ F ′′
αkδ \ Q ⊆ Fαkδ. Thus,

(7a) Eαiαk
∩ Fαiδ ∩ D ⊆ Fαkδ;

(7b) Fαiαk
∩ Eαiδ ∩ D ⊆ Fαkδ.

Because of (3) we have Eαkδ ∩ Fαkδ ∩ D = ∅, so (7a) implies Eαiαk
∩ Fαiδ ∩

Eαkδ ∩ D = ∅. By (4), Fαiδ ∪ Eαiδ = Z, hence Eαiαk
∩ Eαkδ ∩ D ⊆ Eαiδ,

which is (5b). Similarly, (7b) implies Fαiαk
∩ Eαiδ ∩ D ∩ Eαkδ = ∅, hence

Eαiδ ∩ Eαkδ ∩ D ⊆ Eαiαk
, which is (5c). By the same argument, (6a) implies

that Fαiαk
∩ Fαiδ ∩ Fαkδ ∩ D = ∅, which yields (6b) and (6c). The proof is

complete.

Thus, we have families {Eαβ | α, β ∈ I, α 6= β}, {Fαβ | α, β ∈ I, α 6= β}
with (1)-(6). For every z ∈ Z let D(z) = {α ∈ I | z ∈ Dα}. For α, β ∈ D(z)
we set α ∼z β if z ∈ Eαβ or α = β. Now (5) ensures that ∼z is an equivalence
relation and (6) means that this equivalence has at most two equivalence
classes. Now we shall extend the index set I so that (1)-(6) remain valid and
for every z ∈ Z the equivalence ∼z has either 0 or 2 equivalence classes. (Of
course, 0 equivalence classes means that D(z) = ∅.)

Suppose that z ∈ Z is such that ∼z has exactly 1 equivalence class. Then
z ∈ Dδ for some δ ∈ I. Necessarily, z ∈ Zn and by 2.8 there is a clopen set
C ⊆ Dδ, z ∈ C. Let I ′ = I ∪ {z}. We set Cz

0 = Z, Cz
1 = C, so that Dz = C.

Further we set Eδz = Cδ
0 \ C, Fδz = Cδ

1 and for every α ∈ I \ {δ}
Eαz = (C ∩ Fαδ) ∪ (Cα

0 \ (C ∩ Dα)),
Fαz = (C ∩ Eαδ) ∪ (Cα

1 \ (C ∩ Dα)).
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Since C is clopen, all the defined sets are compact open. (See 3.4.) We check
that (1)-(6) remain valid.

Let α ∈ I, α 6= δ. Since Cz
0 ⊇ Z0 and Cz

1 ∩ Z0 = C ∩ Z0 = ∅, we can
compute:
((Cα

0 ∩ Cz
0 ) ∪ (Cα

1 ∩ Cz
1 )) ∩ Z0 = Cα

0 ∩ Z0 = Eαz ∩ Z0,
((Cα

0 ∩ Cz
1 ) ∪ (Cα

1 ∩ Cz
0 )) ∩ Z0 = Cα

1 ∩ Z0 = Fαz ∩ Z0.
The same is true if we write δ instead of α. Hence, (1) and (2) hold. Further,
Eδz ∩ Fδz ∩Dδ ∩Dz ⊆ (Cδ

0 \C)∩C = ∅. Since Eαz ∩Dα ∩Dz = Eαz ∩Dα ∩
C = Fαδ ∩ Dα ∩ Dz and Fαz ∩ Dα ∩ Dz = Eαδ ∩ Dα ∩ Dz, we obtain that
Eαz ∩Fαz ∩Dα ∩Dz ⊆ Fαδ ∩Eαδ ∩Dα ∩Dδ = ∅. (Obviously, Dz = C ⊆ Dδ.)
This shows (3).

Further, Eδz ∪ Fδz = (Cδ
0 \ C) ∪ Cδ

1 = Cδ
0 ∪ Cδ

1 = Z and Eαz ∪ Fαz =
(C∩(Eαδ∪Fαδ))∪(Cα

0 \(C∩Dα))∪(Cα
1 \(C∩Dα)) ⊇ C∪(Cα

0 \C)∪(Cα
1 \C) =

Cα
0 ∪ Cα

1 = Z. Thus, (4) holds.
To show (5) and (6) let α, β ∈ I, α 6= β 6= δ 6= α. Let us denote

D = Dα ∩Dβ ∩Dz, D′ = Dα ∩Dδ ∩Dz. Notice that D ⊆ Dδ, Eδz ∩D′ = ∅,
Fδz ∩ D′ = D′. We have:
Eαβ ∩ Eβz ∩ D = Eαβ ∩ Fβδ ∩ D ∩ Dδ ⊆ Fαδ ∩ Dα ∩ Dz ⊆ Eαz,
Eαz ∩ Eβz ∩ D = Fαδ ∩ Fβδ ∩ D ⊆ Eαβ,
Eαδ ∩ Eδz ∩ D′ = Eαz ∩ Eδz ∩ D′ = ∅,
Eαδ ∩ Eαz ∩ D′ = Eαδ ∩ Fαδ ∩ D′ = ∅,
which shows (5). Similarly,
Fαβ ∩ Fβz ∩ D = Fαβ ∩ Eβδ ∩ D ⊆ Fαδ ∩ Dα ∩ Dz ⊆ Eαz,
Fαz ∩ Fβz ∩ D = Eαδ ∩ Eβδ ∩ D ⊆ Eαβ,
Fαδ ∩ Fδz ∩ D′ = Fαδ ∩ D′ ⊆ Eαz,
Fαδ ∩ Fαz ∩ D′ ⊆ Fαδ ∩ Eαδ ∩ D′ = ∅,
Fαz ∩ Fδz ∩ D′ ⊆ Fαz ∩ Dα ∩ Dz ⊆ Eαδ.
This completes the proof of (6).

Since (6) remained valid, ∼y has at most 2 equivalence classes for every
y ∈ Z. Moreover, ∼z has now 2 equivalence classes, since z ∈ C = Fδz .
Repeating this procedure we obtain families {Eαβ | α, β ∈ I ′′, α 6= β},
{Fαβ | α, β ∈ I ′′, α 6= β} satisfying (1)-(6) such that ∼z has either 0 or 2
equivalence classes for every z ∈ Z. In the sequel we write I instead of I ′′.
(The assumption |I| ≤ ℵ1 is no longer essential.)

Lemma 3.7 There exist families of compact open sets {Eαβ | α, β ∈ J, α 6=
β}, {Fαβ | α, β ∈ J, α 6= β} such that (1)-(5) are valid and, moreover,

(*) for every z ∈ Z, ∼z has either 0 or 3 equivalence classes;
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(**) for every z1, z2 ∈ Z, z1 6= z2, there is α ∈ J such that z1 ∈ Cα
0 \Cα

1 , z2 ∈
Cα

1 \ Cα
0 .

P r o o f. Let G1 be the set of all clopen sets in Z that are subsets of
D =

⋃

α∈I Dα ⊆ Zn. Let G2 be the family of all clopen subsets of Z. Let J
be the disjoint union of the sets I, G1 and G2. We need to define the sets Cα

0 ,
Cα

1 , Eαβ, Fαβ if α ∈ G1 ∪ G2 or β ∈ G1 ∪ G2.
For α ∈ G1 we set Cα

0 = Z, Cα
1 = α. For α ∈ G1, β ∈ I we define

Eαβ = Cβ
0 \ (α ∩ Dβ), Fαβ = α ∪ Cβ

1 . If α, β ∈ G1, we set Eαβ = Z, Fαβ = ∅.
For α ∈ G2 we set Cα

0 = Z \ α, Cα
1 = α. If α ∈ G2, β ∈ J \ {α}, we set

Eαβ = (Cα
0 ∩ Cβ

0 ) ∪ (Cα
1 ∩ Cβ

1 ), Fαβ = (Cα
0 ∩ Cβ

1 ) ∪ (Cα
1 ∩ Cβ

0 ).
Since every α ∈ G1 ∪ G2 is a clopen set, all the defined sets are compact

open. (Use 3.4.) In all cases, (1), (2) and (4) are easy to see.
(3) is trivial if α ∈ G2 or β ∈ G2, because for α ∈ G2 we have Dα = ∅. If

both α and β belong to G1 then (3) follows from Fαβ = ∅. Finally, let α ∈ G1,
β ∈ I. Then Eαβ ∩ Dα ∩ Dβ = Eαβ ∩ α ∩ Dβ = ∅. Hence, (3) holds.

If some of α, β, γ belong to G2, then Dα ∩Dβ ∩Dγ = ∅ and (5) is trivial.
If α ∈ G1, β ∈ I, then Eαβ ∩Dα∩Dβ = ∅, which implies (5). The other cases
when {α, β, γ} ∩ G1 6= ∅ and {α, β, γ} ∩ I 6= ∅ are similar. The remaining
case is α, β, γ ∈ G1. Then Eαγ = Z and (5) is trivial.

Now we show (*). If z /∈ D then z /∈ Dα for every α ∈ G1∪G2 and ∼z has 0
equivalence classes. Suppose that z ∈ Dα for some α ∈ I. Then ∼z restricted
to I has two equivalence classes, hence z ∈ Dα ∩ Dβ and z ∈ Fαβ for some
β ∈ I. By 2.8, there is γ ∈ G1 with z ∈ γ ⊆ D. Then z ∈ Dγ = γ ⊆ Fαγ∩Fβγ .
Thus, α, β and γ belong to different ∼z-equivalence classes.

Now, let δ ∈ J \ {α, β, γ}, z ∈ Dδ. We claim that either z ∈ Eαδ or
z ∈ Eβδ or z ∈ Eγδ. This is clear from (6) if δ ∈ I, since α, β ∈ I. If δ ∈ G1,
then obviously z ∈ Eγδ. Finally, the case δ ∈ G2 is excluded because Dδ = ∅
whenever δ ∈ G2.Thus ∼z has exactly 3 equivalence classes.

It remains to show (**). Let z1 6= z2. If z1, z2 ∈ Z0 then z1 ∈ Bα,
z2 /∈ Bα for some Bα ∈ B and therefore z1 ∈ Cα

0 , z2 ∈ Cα
1 for some α ∈ I.

Since Cα
0 ∩Cα

1 ∩Z0 = ∅, we have z1 ∈ Cα
0 \Cα

1 , z2 ∈ Cα
1 \Cα

0 . If z1 /∈ Z0 then
there is a clopen set C ⊆ Zn with z1 ∈ C, z2 /∈ C. Clearly, δ = Z \ C ∈ G2,
z1 ∈ Cδ

0 \ Cδ
1 , z2 ∈ Cδ

1 \ Cδ
0 .

Lemma 3.8 For every α, β ∈ J , the sets Cα
0 ∩ Cβ

0 \ (Fαβ ∩ Dα ∩ Dβ), Cα
1 ∩

Cβ
1 \ (Fαβ ∩ Dα ∩ Dβ), Cα

0 ∩ Cβ
1 \ (Eαβ ∩ Dα ∩ Dβ) are open.
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P r o o f. We prove the statement for the set Y = Cα
0 ∩Cβ

0 \ (Fαβ ∩Dα ∩Dβ).
By 3.2, the set Y ∩ Zn is open. By (1) and (3), Y ∩ Z0 ⊆ Eαβ, hence
Y ∩ Z0 ⊆ Y ∩ Eαβ ⊆ Y and hence Y = (Y ∩ Zn) ∪ (Y ∩ Eαβ), which is an

open set because Y ∩ Eαβ = Cα
0 ∩ Cβ

0 ∩ Eαβ is open.

Now we are ready to define an embedding ϕ : Z → L3(J). For every
z ∈

⋃

i∈J Dα let Az, Bz, Cz denote the three equivalence classes of ∼z. For

every z ∈ Z we set ϕ(z) = f , where f : J → {0, 1, a1, a2, a3} is defined as
follows:

f(α) =























0 if z ∈ Cα
0 \ Cα

1 ,
1 if z ∈ Cα

1 \ Cα
0 ,

a1 if z ∈ Az,
a2 if z ∈ Bz,
a3 if z ∈ Cz.

Since Az, Bz, Cz 6= ∅ or Az = Bz = Cz = ∅, f is indeed an element of L3(J).
In the definition of f it does not matter which ∼z-equivalence class is denoted
Az, Bz or Cz respectively.

Lemma 3.9 ϕ is injective.

P r o o f. Let z1 6= z2, ϕ(z1) = f , ϕ(z2) = g. By (**) there is δ ∈ J such
that f(δ) = 0, g(δ) = 1, hence f 6∼ g.

Lemma 3.10 ϕ is continuous.

P r o o f. By 2.4 we have to show that ϕ−1(Gr) is open for every r :
{α, β} → {0, 1}, α, β ∈ J . If α = β then ϕ−1(Gr) is equal to Cα

0 or Cα
1 . Let

α 6= β. First let r(α) = r(β) = 0. By the definition of Gr, (3) and (4) we
have ϕ−1(Gr) = ((Cα

0 \ Cα
1 ) ∩ (Cβ

0 \ Cβ
1 )) ∪ (Cα

0 \ Cα
1 ) ∩ Dβ) ∪ (Dα ∩ (Cβ

0 \
Cβ

1 )) ∪ (Dα ∩ Dβ ∩ Eαβ) = ((Cα
0 ∩ Cβ

0 ) \ (Dα ∩ Dβ)) ∪ (Dα ∩ Dβ ∩ Eαβ) =

(Cα
0 ∩ Cβ

0 ) \ (Dα ∩ Dβ ∩ Fαβ), which is open by 3.8.

If r(α) = 0, r(β) = 1, the calculation is the same, just interchange Cβ
0

with Cβ
1 and Eαβ with Fαβ. The remaining possibilities for r are similar.

Lemma 3.11 Let P , Q be open compact subsets of Z such that P ∩ Z0 =
Q ∩ Z0. Then P = (Q \ B1) ∪ B2 for some clopen sets B1, B2 ⊆ Z.
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P r o o f. By 3.2, the sets B1 = Q \ P and B2 = P \ Q are clopen in Zn and
hence open in Z. Obviously, they are compact. By 3.3, they are closed.

Lemma 3.12 ϕ is an open mapping.

P r o o f. For every α ∈ J we have ϕ(Cα
0 ) = {f ∈ L3(J) | f(α) 6= 1}∩ϕ(Z),

ϕ(Cα
1 ) = {f ∈ L3(J) | f(α) 6= 0} ∩ ϕ(Z), which are open subsets of ϕ(Z).

Further, if C is clopen then C = α for some α ∈ G2 and ϕ(C) = ϕ(Cα
1 \Cα

0 ) =
{f ∈ ϕ(Z) | f(α) = 1} and ϕ(Z \C) = ϕ(Cα

0 \Cα
1 ) = {f ∈ ϕ(Z) | f(α) = 0},

which are closed subsets of ϕ(Z). Hence, ϕ(C) is clopen in ϕ(Z).
Now, let B be an arbitrary open compact subset of Z. Then B ∩Z0 ∈ B

and hence B ∩ Z0 = Cα
0 ∩ Z0 for some α ∈ J . By 3.11, B = (Cα

0 \ B1) ∪ B2

for some clopen sets B1, B2. Since ϕ is injective, we have ϕ(B) = (ϕ(Cα
0 ) \

ϕ(B1)) ∪ ϕ(B2), which is an open set.
Thus, ϕ(B) is open for every open compact set B ⊆ Z. Since these sets

form a base of the topology of Z, ϕ(M) is open for every open set M ⊆ Z.

Lemma 3.13 ϕ(Z) is a closed subset of L3(J).

P r o o f. Since Z is compact, ϕ(Z) is compact too. For contradiction,
suppose that f ∈ cl(ϕ(Z)) \ ϕ(Z). By 1.1 there is g = ϕ(z) ∈ ϕ(Z) and a
net N = {ϕ(xα) | α ∈ Λ} ⊆ ϕ(Z) such that f and g are the limit points
of N . This net has no other cluster points. Necessarily, f, g : J → {0, 1},
f 6= g. There exists γ ∈ J such that f(γ) 6= g(γ). Let ϕ(xα) = hα. The
sets A0 = {h ∈ L3(J) | h(γ) 6= 0}, A1 = {h ∈ L3(J) | h(γ) 6= 1} are open
and contain the points f and g respectively. Hence, there is β ∈ Λ such that
hα ∈ A0 ∩ A1 for every α ≥ β. Consider the net M = {xα | α ∈ Λ, α ≥ β}.
Since Z is compact, M must have some cluster points. If x is a cluster point
of M , then the continuity of ϕ implies that ϕ(x) is a cluster point of N . It
follows that z is the only cluster point of M . Further, hα ∈ A0 ∩ A1 implies
xα ∈ Dγ = Cγ

0 ∩ Cγ
1 . Since the sets Cγ

0 , Cγ
1 are compact, we obtain that

z ∈ Dγ, which means that g(γ) ∈ {a1, a2, a3}, a contradiction.

Thus, we have completed the proof of our main result.

Theorem 3.14 Let Z be a topological space satisfying (i)–(v) of 2.7. If Z0

contains at most ℵ1 clopen sets, then Z is homeomorphic to a closed subspace
of L3(X) for some set X.
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Together with 2.7 we have the following consequence.

Theorem 3.15 If |X| ≤ ℵ1 and n ≥ 3 then Ln(X) is homeomorphic to a
closed subspace of L3(X).

On the other hand, in [6] we proved that for |X| > ℵ1 the space Ln+1(X)
is not embeddable in Ln(X). To get an abstract characterization of closed
subspaces of L3(X) in general, we should state the existence of the sets Eαβ,
Fαβ with appropriate properties as an additional condition.

4 Congruence lattices of lattices

Let L be a distributive algebraic lattice. An element x ∈ L is called strictly
meet irreducible if x = inf X implies x ∈ X for every subset X of L. Let
M(L) denote the set of all strictly meet irreducible elements. Endow the set
M(L) with the topology whose closed sets are Cx = {y ∈ M(L) | y ≥ x} for
all x ∈ L. We have the following theorem. (See [6], theorems 2.4, 3.2 and
5.1.)

Theorem 4.1 For a distributive algebraic lattice L, the following conditions
are equivalent:

1. L is isomorphic to Con(A) for some A ∈ M01
n ;

2. M(L) is homeomorphic to a closed subspace of Ln(X) for some set X;

3. L is isomorphic to O(Z) for some set X and a closed subspace Z of
Ln(X).

Remark. Instead of M01
n , the paper [6] deals with the varieties Mn

of (possibly unbounded) lattices. Consequently, it investigates the spaces
H(Fn(X)) which are obtained from Ln(X) by deleting the points o, i, which
correspond to the two constant mapping X → {0, 1}. That is why we used
the results of [6] only in the places where the difference between H(Fn(X))
and Ln(X) is inessential.

The spaces H(Fn(X)) are not compact. We conjecture that theorems
analogous to 3.14 and 3.15 are valid for these spaces if the compactness is
replaced by local compactness at appropriate places. However, an attempt
to do so leads to a quite nontrivial complications.

The above theorem together with 3.14 and 3.15 has the following conse-
quences.
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Theorem 4.2 Let L be a distributive algebraic lattice containing at most
ℵ1 compact elements. Let n ≥ 3. The following condition are equivalent:

1. L is isomorphic to Con(A) for some A ∈ M01
n ;

2. M(L) satisfies (i)–(v) of 2.7;

3. L is homeomorphic to O(Z) for some topological space Z satisfying
(i)–(v) of 2.7.

Theorem 4.3 If A ∈ M01
n , n ≥ 3 and |A| ≤ ℵ1 then there exists B ∈ M01

3

such that Con(A) is isomorphic to Con(B).
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