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ABSTRACT. Algebraic lattices constitute an appropriate setting for generalizing
the results existing in particular structures, as l -groups, MV-algebras, etc.. In
this paper we study the very large elements and the very large radical of an

algebraic lattice. We also define and characterize compactly generated algebraic
lattices. Our results are generalizations of some theorems proved for l -groups in
[Bigard, A.—Conrad, P.—Wolfenstein, S.: Compactly generated lattice-ordered
groups , Math. Z. 107 (1968), 201–211], [Conrad, P.—Martinez, J.: Very large
subgroups of lattice-ordered groups , Comm. Algebra 18 (1990), 2063–2098],
[Conrad, P.—Martinez, J.: Complemented lattice-ordered groups , Indag. Math.

(N.S.) 1 (1990), 281–298] and for MV-algebras in [Di Nola, A.—Georgescu, G.—
Sessa, S.: Closed ideals of MV-algebras. In: Advances in Contemporary Logic
and Computer Science (W. A. Carnielli, I. M. L. D’Ottaviano eds.). Contemp.
Math. 235, Amer. Math. Soc., Providence, RI, 1999, pp. 99–111].

If G is an l -group, then the set C(G) of its convex l -subgroups is an alge-
braic, distributive lattice ([1]). In fact, C(G) is a relatively normal lattice (IRN,
in terms of [8], [9]). A classical problem in the l -group theory is to express
the l -group notions and theorems in lattice-theoretical terms. The algebraic,
distributive lattices constitute good abstract candidates (see [6], [7]), but some
other results in l -groups (for example the finite basis theorem) necessitate to
work in relatively normal lattices ([8], [9]). We remark that this kind of abstrac-
tion is a general problem in universal algebra: to formulate and to prove some
results in an abstract lattice-theoretical context instead of in some particular
lattice of congruences (see for example [6]). This generality often brings more
light on the content of the theorems and the relations between the structures.
The present paper is a contribution to this program. We formulate and prove
in the setting of algebraic lattices some results of l -groups ([2], [3], [4]) and of
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MV-algebras ([5]). We introduce the notion of very large element in algebraic
lattices; we study the very large radical and very large basis in an algebraic
lattice and we characterize compactly generated algebraic lattices.

Let A be an algebraic, distributive lattice with the least element 0 and the
greatest element 1 and Com(A) the join-subsemilattice of compact elements
of A . Throughout this paper we assume that Com(A) is a sublattice of A .

An element p < 1 is meet-irreducible if p = x ∧ y implies p = x or p = y ;
an element p < 1 is meet-prime if x ∧ y ≤ p implies x ≤ p or y ≤ p .

As A is distributive, meet-irreducible and meet-prime elements are the same.
These definitions can be extended to arbitrary meets and we obtain the concepts
of completely meet-irreducible and completely meet-prime elements, which are
no longer equivalent.

The set of all meet-prime elements of A will be denoted by Spec A and the
set of all minimal meet-prime elements of A by MinA .

Every algebraic lattice contain a lot of (completely) meet-irreducible ele-
ments. In fact, every element is the meet of a set of completely meet-irreducible
elements. If c ∈ Com(A) and x ∈ A , c �≤ x , then there is a maximal ele-
ment p ∈ A with c �≤ p , x ≤ p . Every such maximal element is completely
meet-irreducible.

Every element maximal with respect to not exceeding c is called a value of c .
The set of all values of c will be denoted by Val(c) .

Every completely meet-irreducible element is a value of some compact ele-
ment. Thus, Val(A) (the set of all values of A) coincides with the set of all
completely meet-irreducible elements.

It is well known that every distributive algebraic lattice is pseudocomple-
mented. For a ∈ A , let a∗ denote the psedocomplement of a .

����� �� ([7; 2.5.1], [9]) If p ∈ Spec A , then the following are equivalent:

(1) p ∈ MinA .
(2) For any c ∈ Com(A) , c ≤ p if and only if c∗ �≤ p .
(3) p =

∨{
c∗ : c ∈ Com(A) , c �≤ p

}
.

By (2), if c ≤ p , then c∗ �≤ p and c∗∧ c∗∗ ≤ p , hence c∗∗ ≤ p . Thus, we have
the following assertion.

Remark 2. For any c ∈ Com(A) and p ∈ MinA , c ≤ p if and only if c∗∗ ≤ p .
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����� �� ([7; 2.5])
(i) If p ∈ MinA , then N(p) =

{
c ∈ Com(A) : c �≤ p

}
is an ultrafilter of

the lattice Com(A) .
(ii) If M is an ultrafilter of Com(A) , then pM =

∨{c∗ : c ∈ M} is an
element of MinA .

(iii) The functions p �→ N(p) and M �→ pM establish a bijective correspon-
dence between MinA and the set of ultrafilters of Com(A) .

����� �� For any a ∈ A , a∗ =
∧{

p ∈ MinA : a �≤ p
}
. In particular,

0 = 1∗ =
∧

Min A .

P r o o f . If p ∈ MinA , a �≤ p , then 0 = a ∧ a∗ ≤ p , hence a∗ ≤ p . Thus,
a∗ ≤ ∧{p ∈ MinA : a �≤ p} = d . For contradiction, suppose that a∗ < d . Then
a ∧ d > 0, so 0 < c ≤ a ∧ d for some c ∈ Com(A) . There is an ultrafilter M
of Com(A) with c ∈ M . By Lemma 3, M = N(pM ) , hence c �≤ pM , which
implies a �≤ pM and d �≤ pM . However, a �≤ pM ∈ Min A implies d ≤ pM , a
contradiction.

For a ∈ A denote

D(a) =
{
p ∈ MinA : a �≤ p

}
, V (a) =

{
p ∈ MinA : a ≤ p

}
.

It is easy to see that D
( ∨

i∈I

ai

)
=

⋃

i∈I

D(ai) and D(a1∧a2) = D(a1)∩D(a2) for

any ai ∈ A . Thus, Min A has a canonical structure of topological space whose
open sets are the sets D(a) , a ∈ A . The next assertion follows from Lemma 1
and Lemma 4. It implies that Min A is a zero-dimensional Hausdorff space.

����� �� Let a ∈ A and c ∈ Com(A) . Then
(i) D(c) = D(c∗∗) = V (c∗) ,
(ii) clD(a) = V (a∗) ,
(iii) intV (a) = D(a∗) .

An element a ∈ A is dense if a∗ = 0; it is very large if D(a) = Min A . This
notion extends the concept of very large convex l -subgroup of an l -group ([3]).

Obviously, every non-minimal meet-prime element is very large.

����� 	� Any very large element a of A is dense.

P r o o f . Let a ∈ A be not dense. Then a∗ �= 0. Since
∧

Min A = 0, there
exists n ∈ Min A such that a∗ �≤ n . Since a ∧ a∗ = 0 ≤ n and n is meet-prime,
we have a ≤ n , which shows that a is not very large.

Since D(a ∧ b) = D(a) ∩ D(b) , the set V(A) of very large elements in A is
a lattice filter of A . Let us denote r(A) =

∧V(A) . This extends the notion of
very large radical of an l -group ([3]).

249



 
 AUTHOR C

OPY 
GEORGE GEORGESCU — MIROSLAV PLOŠČICA

For any a ∈ A , D(a) is a clopen set if and only if a∨a∗ is very large. Indeed
D(a) is closed if and only if D(a) = V (a∗) if and only if a ∨ a∗ �≤ p for each
p ∈ MinA . Thus, Lemma 5(i) has the following consequence.

����� 
� For every c ∈ Com(A) , the element c ∨ c∗ is very large.

�������� �� r(A) =
∧{

c ∨ c∗ : c ∈ Com(A)
}
.

P r o o f . If a is very large, then a =
∧

P for some P ⊆ Spec A \ Min A .
By (2) of Lemma 1, for every p ∈ P there is c ∈ Com(A) with c ∨ c∗ ≤ p .
Hence, r(A) ≥ ∧{

c ∨ c∗ : c ∈ Com(A)
}

. The converse follows from Lemma 7.

����� �� If r(A) ≥ x ∈ Com(A) , then Val(x) ⊆ MinA .

P r o o f . Let x ∈ Com(A) , x ≤ r(A) and p /∈ MinA for some p ∈ Val(x) .
Thus p0 < p for some p0 ∈ Spec A , so there exists y ∈ Com(A) such that y ≤ p
and y �≤ p0 . By Proposition 8, x ≤ y ∨ y∗ , so x ≤ y ∨ z for some z ∈ Com(A)
with z ∧ y = 0, hence z ≤ p0 < p . This yields x ≤ y ∨ z ≤ p , contradicting
p ∈ Val(x) .

�������� ��� r(A) =
∨{

x ∈ Com(A) : Val(x) ⊆ MinA
}
.

P r o o f . Let x ∈ Com(A) be such that Val(x) ⊆ MinA . Let a be very
large. If x �≤ a , then there exists p ∈ Val(x) such that a ≤ p , which is a
contradiction because p ∈ MinA . Hence, x ≤ a and therefore x ≤ r(A) . Thus,
r(A) ≥ ∨{

x ∈ Com(A) : Val(x) ⊆ MinA
}

. The inverse inequality follows from
Lemma 9.

�������� ��� The following conditions are equivalent:

(1) There exists a minimal very large element of A .
(2) r(A) is a very large element.
(3) For any p ∈ MinA there exists x ∈ Com(A) such that p ∈ Val(x) and

Val(x) ⊆ MinA .

P r o o f .
(1) =⇒ (2): Trivial.
(2) =⇒ (3):

For any p ∈ MinA we have r(A) �≤ p , so there exists x ∈ Com(A) such that
x ≤ r(A) and x �≤ p . One can find an element p1 ∈ Val(x) and p ≤ p1 . By
Lemma 9 we have Val(x) ⊆ MinA and p1 ∈ MinA , so p = p1 and p ∈ Val(x) .
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(3) =⇒ (1):
Assume r(A) is not a very large element, so r(A) ≤ p for some p ∈ Min A .
By the hypothesis (3), there exists x ∈ Com(A) such that p ∈ Val(x) and
Val(x) ⊆ MinA . By Proposition 10, x ≤ r(A) ≤ p , contradicting p ∈ Val(x) .

An element x �= 0 is called linear (or basic in the terminology of [7]) if 0
is meet-prime in the lattice (x] = {y ∈ A : y ≤ x} . Denote by P (A) = {a∗ :
a ∈ A} the set of polars (pseudocomplements) of A .

����� ��� ([7; 2.1]) For any element a > 0 the following are equivalent:
(1) a is linear.
(2) a∗∗ is linear.
(3) If 0 < x ≤ a , then x∗ = a∗ .
(4) a∗ ∈ Spec A .
(5) a∗ ∈ MinA .
(6) a∗ is a maximal polar.
(7) a∗∗ is a minimal polar.
(8) a∗∗ is a maximal linear element.

Recall that a subset B of A is a basis of A if it is a maximal orthogonal
(= disjoint) set in A and every element of B is linear. A basis B is very large
if

∨{
b∗∗ : b ∈ B

}
is a very large element of A .

�������� ��� The following assertions are equivalent:
(1) Any dense element of A is a very large element.
(2) Min A ⊆ P (A) .
(3) A has a very large basis.

P r o o f .
(1) =⇒ (2):

Let p ∈ MinA . We have p∗ ∧ p∗∗ ≤ p , so p∗∗ = p or p∗ ≤ p . If p∗ ≤ p , then
p∗ = 0, which means that p is dense and, by (1), very large. For p ∈ Min A this
is impossible. Hence, p = p∗∗ ∈ P (A) .

(2) =⇒ (3):
If p ∈ MinA , then p = p∗∗ �= 1 by (2). Lemma 12 implies that p∗ = p∗∗∗ is
linear. (Notice that p∗ �= 0 because p∗∗ �= 1.) We claim that {p∗ : p ∈ MinA}
is a basis. If p∗ ∧ q∗ �= 0, then by Lemma 12(3), p = p∗∗ = (p∗∧ q∗)∗ = q∗∗ = q .
Hence, p∗ ∧ q∗ = 0 for any distinct p, q ∈ MinA . To show the maximality,
let x be a linear element such that x ∧ p∗ = 0 for every p ∈ Min A . Then
x ≤ p∗∗ = p for every p , hence x ≤ ∧

MinA = 0, a contradiction. Thus,
{p∗ : p ∈ Min A} is a basis. For any q ∈ MinA we have q∗∗∗ = q∗ �≤ q , hence∨{

(p∗)∗∗ : p ∈ Min A
} �≤ q , so our basis is very large.
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(3) =⇒ (1):
Let {ci : i ∈ I} be a very large basis. Then, for every p ∈ MinA ,

∨

i∈I

c∗∗i �≤ p ,

hence c∗∗i �≤ p for some i . Since 0 = c∗i ∧ c∗∗i ≤ p ∈ Spec A , we have c∗i ≤ p .
By Lemma 12, the linearity of ci implies c∗i ∈ MinA , hence c∗i = p . Then
p∗∗ = c∗∗∗i = c∗i = p �= 1, hence p∗ �= 0.

Now let a ∈ A be dense. Then, for every p ∈ MinA , a ≤ p would imply
p∗ ≤ a∗ = 0, which is impossible. Thus, a is very large.

A is compactly generated if for any C ⊆ Com(A) ,
∧

C = 0 implies there
exists D ⊆ C finite such that

∧
D = 0.

�������� ��� The following are equivalent:

(1) A is compactly generated.
(2) A is atomic and MinA ⊆ P (A) .
(3) For any m ∈ MinA there exists an atom a �≤ m .
(4) Any ultrafilter of Com(A) is principal.

P r o o f .
(1) =⇒ (2):

Let x ∈ A , x > 0. Then x ≥ c > 0 for some c ∈ Com(A) . By Zorn axiom,
there exists a maximal chain in Com(A) \ {0} containing c . Now (1) implies
that a =

∧
C �= 0. The maximality of C implies that a is an atom of A , a ≤ x .

Thus, A is atomic.
If m ∈ Min A , then m =

∨{
c∗ : c �≤ m , c ∈ Com(A)

}
and K = N(m) ={

c ∈ Com(A) : c �≤ m
}

is an ultrafilter of Com(A) . Assume
∧

K = 0, so
there exist c1, . . . , cn ∈ K such that c = c1 ∧ · · · ∧ cn = 0 and c ∈ K . This
contradiction yields

∧
K �= ∅ , so there exists an atom a ≤ ∧

K , so a ≤ c for
any c ∈ K . Then K =

{
x ∈ Com(A) : a ≤ x

}
because K is maximal.

Now we shall prove that m = a∗ . If c ∈ Com(A) and c∧ a = 0, then c /∈ K ,
so c ≤ m , hence a∗ ≤ m . Conversely, if c ∈ Com(A) and c �≤ m , then c ∈ K ,
hence a ≤ c and c∗ ≤ a∗ . thus, m =

∨{
c∗ : c �≤ m , c ∈ Com(A)

} ≤ a∗ .
(2) =⇒ (3):

Assume m ∈ MinA , so m = x∗ for some x ∈ A . We have x �= 0 (because
x∗ = m �= 1), so there exists an atom a such that a ≤ x . If a ≤ m , then
a ≤ x ∧ x∗ = 0. This contradiction shows that a �≤ m .

(3) =⇒ (4):
If K is an ultrafilter, then m =

∨{c∗ : c ∈ K} is in Min A . By our hypothesis
there exists an atom a �≤ m . Thus a ∈ K =

{
c ∈ Com(A) : c �≤ m

}
. But K is

an ultrafilter and a is an atom, so K =
{
c ∈ Com(A) : a ≤ c

}
.
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(4) =⇒ (1):
Let C ⊆ Com(A) such that for any finite D ⊆ C ,

∧
D �= 0. Then there exists

an ultrafilter K such that C ⊆ K . But K is principal, so K =
{
c ∈ Com(A) :

a ≤ c
}

for some a ∈ Com(A) , so 0 < a ≤ ∧
K ≤ ∧

C .

The previous proposition extends results proved for l -groups in [2] and for
MV-algebras in [5].
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