UNIFORM REFINEMENTS IN DISTRIBUTIVE SEMILATTICES

MIROSLAV PLOŠČICA AND JIŘÍ TU゚MA

Abstract

This is a contribution to the well known problem whether every algebraic distributive lattice can be represented as the congruence lattice of some lattice. We present two constructions of distributive semilattices without a special refinement property, called WURP. Failure of WURP means that these semilattices are difficult to represent as semilattices of compact congruences of lattices. In fact, we do not know if these semilattices have such representation. Our construction is motivated by a recent paper of F. Wehrung, who found a similar example using ordered vector spaces.

1. Introduction

A distributive semilattice is a (join)-semilattice S with 0 satisfying the following condition. Whenever $x, y, z \in S$ and $x+y \geq z$, then there are elements $x^{\prime} \leq x$, $y^{\prime} \leq y$ such that $x^{\prime}+y^{\prime}=z$. Distributivity of semilattices can be also defined in a more symmetric way. Whenever $x_{0}, x_{1}, y_{0}, y_{1} \in S$ are such that $x_{0}+x_{1}=y_{0}+y_{1}$, then there are elements $z_{i j} \in S, i, j=0,1$, such that $z_{i 0}+z_{i 1}=x_{i}, z_{0 j}+z_{1 j}=y_{j}$, $i, j=0,1$.

Distributive semilattices are exactly semilattices of compact elements of distributive algebraic lattices. So the classical Congruence Lattice Problem whether every algebraic distributive lattice can be represented as the congruence lattice of a lattice can be reformulated as the problem whether every distributive semilattice is isomorphic to the semilattice of compact congruences of a lattice.

In [3] F. Wehrung formulated a so called Uniform Refinement Property (URP) for distributive semilattices and constructed a distributive semilattice that fails this property. In a subsequent paper [4] he proved that compact congruence semilattices of a large class of lattices satisfy (URP). This class of "congruence splitting" lattices contains all sectionally complemented lattices, relatively complemented lattices, atomistic lattices, and is closed under direct limits.

On the other hand, the authors of the present paper together with F. Wehrung proved in [2] that compact congruence semilattice of the free lattice with at least \aleph_{2} free generators in any non-distributive variety of lattices does not satisfy even weaker condition, which is called the Weak Uniform Refinement Property (WURP). We say that a distributive semilattice S satisfies (WURP) at an element $e \in S$ if, for every system $a_{i}^{\alpha}, \alpha \in \Omega, i=0,1$ of elements of S such that $a_{0}^{\alpha}+a_{1}^{\alpha}=e$ for every $\alpha \in \Omega$, there are elements $c^{\alpha \beta} \in S, \alpha, \beta \in \Omega$ satisfying the following conditions:
(1) $c^{\alpha \beta} \leq a_{0}^{\alpha}, a_{1}^{\beta}$,
(2) $c^{\alpha \beta}+a_{1}^{\alpha}+a_{0}^{\beta}=e$,
(3) $c^{\alpha \gamma} \leq c^{\alpha \beta}+c^{\beta \gamma}$.

[^0]Hence the failure of (WURP) at some point of a distributive semilattice S is not an obstacle for representing this semilattice as the compact congruence semilattice of a lattice.

In the present paper we present two constructions of distributive semilattices that fail (WURP). Both constructions consist in a "free distributive extension" of any semilattice with 0 . The constructions differ according to the definition of distributivity we use. The proof that our "free distributive extensions" fail (WURP) depend on the following Kuratowski's characterization of \aleph_{k} that appeared in [1]. The discovery that Kuratowski's theorem can be used to prove that certain distributive semilattices fail (URP) or (WURP) is due to F. Wehrung [3].

In what follows $[S]^{n}$ denotes the set of all n-element subsets of a set S and $[S]^{<\omega}$ denotes the set of all finite subsets of S.
[. Kuratowski's Theorem] Let n be a non negative integer, let S be a set of cardinality at least \aleph_{n} and let $f:[S]^{n} \rightarrow[S]^{<\omega}$ be any mapping. Then there exists $U \in[S]^{n+1}$ such that $x \notin f(U \backslash\{x\})$ for every $x \in U$.

2. Free distributive extensions of semilattices

Let $(L,+)$ be a (join-) semilattice with 0 . Let us denote

$$
C(L)=\left\{(x, y, z) \in L^{3} \mid x+y \geq z\right\}
$$

A finite set $R \subseteq C(L)$ is called reduced if the following conditions hold:
(1) R contains exactly one triple of the form (x, x, x); this element x will be denoted by t_{R}
(2) if $(x, y, z) \in R$ and $(y, x, z) \in R$ then $x=y=z$;
(3) if $(x, y, z) \in R \backslash\left\{t_{R}, t_{R}, t_{R}\right\}$ then $x \not \leq t_{R}, y \not \leq t_{R}, z \not \leq t_{R}$.

Let $\mathcal{R}(L)$ be the family of all reduced sets. We define an order relation on $\mathcal{R}(L)$ by

$$
R \leq S \quad \text { iff, for every } \quad(x, y, z) \in R \backslash S, x \leq t_{S} \quad \text { or } \quad z \leq t_{S}
$$

Lemma 2.1. $(\mathcal{R}(L), \leq)$ is a semilattice. The supremum $R+S$ can be computed by the following algorithm.
(i) Set $T_{0}=R \cup S$. If T_{0} contains two different elements (x, y, z) and (y, x, z), we replace this pair of elements by a single element (z, z, z). After all such replacements we obtain a set T_{1}.
(ii) Let $\left(x_{1}, x_{1}, x_{1}\right), \ldots,\left(x_{n}, x_{n}, x_{n}\right)$ be all elements of the form (x, x, x) in T_{1}. We replace all these elements by the single element $\left(\Sigma x_{i}, \Sigma x_{i}, \Sigma x_{i}\right)$ and denote the resulting set by T_{2}.
(iii) If there is $(x, y, z) \in T_{2}$ such that $y \leq t_{T_{2}}$, we replace the elements (x, y, z), $\left(t_{T_{2}}, t_{T_{2}}, t_{T_{2}}\right)$ by the element $\left(z+t_{T_{2}}, z+t_{T_{2}}, z+t_{T_{2}}\right)$. (Of course, this changes the value of $t_{T_{2}}$.) We repeat this procedure until no such situation occurs. Let T_{3} be the resulting set.
(iv) $R+S$ is obtained from T_{3} by deleting all elements (x, y, z) with $x \leq t_{T_{3}}$ or $z \leq t_{T_{3}}$.
Proof. I. First we show that $R+S \in \mathcal{R}(L)$. The condition (1) is ensured by the step (ii) and remains valid after performing steps (iii) and (iv). The condition (2) is satisfied because of the step (i). The condition $b \not \leq t_{R+S}$ for every $(a, b, c) \in R+S$ holds because of the step (iii) and the conditions $a \not \leq t_{R+S}, c \not \leq t_{R+S}$ are ensured by the step (iv) of our algorithm.
II. Now we show that $R \leq R+S$. (The proof that $S \leq R+S$ is similar.) Because of (ii) we have $t_{R}+t_{S} \leq t_{R+S}$. Suppose that $(a, b, c) \in R \backslash(R+S)$. Since $(a, b, c) \in R \cup S$, the triple (a, b, c) must have been deleted in some step of the algorithm. If this happened in the step (i) then (c, c, c) was one of the summands in the step (ii) and therefore $c \leq t_{R+S}$. If this happened in the step (ii) then (a, b, c) is of the form (x, x, x) and $x \leq t_{R+S}$. If this happened in the step (iii) then $c+t_{T_{2}} \leq t_{R+S}$, hence $c \leq t_{R+S}$. If this happened in the step (iv), the case is trivial.
III. Let $Q \in \mathcal{R}(L), R \leq Q, S \leq Q$. We show that $R+S \leq Q$. Let $(x, y, z) \in$ $(R+S) \backslash Q$. If $(x, y, z) \in R \cup S$ then $x \leq t_{Q}$ or $z \leq t_{Q}$, because $R \leq Q, S \leq Q$. The remaining case is that (x, y, z) appeared in some step of the algorithm. The only such triple is $\left(t_{R+S}, t_{R+S}, t_{R+S}\right)$ and we need to show that $t_{R+S} \leq t_{Q}$. At the beginning we have $t_{R} \leq t_{Q}$ and $t_{S} \leq t_{Q}$. In the step (i), new triples (c, c, c) can appear such that $(a, b, c) \in R,(b, a, c) \in S$. The set Q cannot contain both (a, b, c) and (b, a, c). If $(a, b, c) \notin Q$ (the other case is similar) we have $a \leq t_{Q}$ or $c \leq t_{Q}$. If $a \leq t_{Q}$ then $(b, a, c) \notin Q$, because Q is reduced. Consequently, $b \leq t_{Q}$ or $c \leq t_{Q}$. If $b \leq t_{Q}$ then also $c \leq a+b \leq t_{Q}$. Hence, in any case, $c \leq t_{Q}$. This means that after the step (ii) we have $t_{T_{2}} \leq t_{Q}$. Consider now the step (iii). Let $(a, b, c) \in R \cup S$, $b \leq t_{T_{2}}$. Then $b \leq t_{Q}$, hence $(a, b, c) \notin Q$ and therefore $a \leq t_{Q}$ or $c \leq t_{Q}$. The case $c \leq t_{Q}$ gives us the desired inequality $c+t_{T_{2}} \leq t_{Q}$. If $a \leq t_{Q}$ then $c \leq a+b \leq t_{Q}$ with the same conclusion. Hence, after the step (iii) we have $t_{R+S}=t_{T_{3}} \leq t_{Q}$ and the step (iv) is inessential.

Lemma 2.2. The assignment $x \mapsto\{(x, x, x)\}$ defines a 0 -preserving semilattice embedding $L \rightarrow \mathcal{R}(L)$.

Proof. Obvious.
By an interpolant on a semilattice L we mean any function $\iota: C(L) \rightarrow L$ that satisfies the conditions $\iota(x, y, z)+\iota(y, x, z)=z$ and $\iota(x, y, z) \leq x$ for every $(x, y, z) \in C(L)$. It is obvious that an interpolant exists on a semilattice L if and only if L is distributive. Also notice that an interpolant on a distributive semilattice L is not determined uniquely.
Theorem 2.3. Let $f: L \rightarrow M$ be a semilattice homomorphism. Suppose that ι is an interpolant on M. Let us define a map $f_{\iota}: \mathcal{R}(L) \rightarrow M$ by

$$
f_{\iota}(R)=\sum_{(x, y, z) \in R} \iota(f(x), f(y), f(z)) .
$$

Then f_{ι} is a semilattice homomorphism and $f_{\iota} \upharpoonright L=f$.
Proof. For $(x, y, z) \in C(L)$ we have $(f(x), f(y), f(z)) \in C(M)$, so f_{ι} is well defined. Since $x=\iota(x, x, x)+\iota(x, x, x)=\iota(x, x, x)$, we have $f_{\iota} \upharpoonright L=f$. Now we claim that

$$
f_{\iota}(R+S)=\sum_{(x, y, z) \in R \cup S} \iota(f(x), f(y), f(z))=f_{\iota}(R)+f_{\iota}(S) .
$$

Let $(x, y, z) \in R \cup S$. Since $R, S \leq R+S$, we have $(x, y, z) \in R+S$ or $x \leq t_{R+S}$ or $z \leq t_{R+S}$. If $(x, y, z) \in R+S$ then $\iota(f(x), f(y), f(z)) \leq f_{\iota}(R+S)$. If $z \leq t_{R+S}$ then $\iota(f(x), f(y), f(z)) \leq f(z) \leq f\left(t_{R+S}\right)=\iota\left(f\left(t_{R+S}\right), f\left(t_{R+S}\right), f\left(t_{R+S}\right)\right) \leq f_{\iota}(R+S)$. A similar argument holds in the case $x \leq t_{R+S}$. This shows that $f_{\iota}(R)+f_{\iota}(S) \leq$ $f_{\iota}(R+S)$.

To prove the inverse inequality, it suffices to show that

$$
f\left(t_{R+S}\right)=\iota\left(f\left(t_{R+S}\right), f\left(t_{R+S}\right), f\left(t_{R+S}\right)\right) \leq f_{\iota}(R)+f_{\iota}(S)
$$

Clearly, $f\left(t_{R}\right) \leq f_{\iota}(R), f\left(t_{S}\right) \leq f_{\iota}(S)$. Let us consider $R+S$ computed by the algorithm from 2.1. Suppose that $(a, b, c) \in R,(b, a, c) \in S$. Then $f(c)=$ $\iota(f(a), f(b), f(c))+\iota(f(b), f(a), f(c)) \leq f_{\iota}(R)+f_{\iota}(S)$. Since f is a homomorphism, after step (ii) we have $f\left(t_{T_{2}}\right) \leq f_{\iota}(R)+f_{\iota}(S)$. Now let $(a, b, c) \in R \cup S, b \leq t_{T_{2}}$. Then $f(c)=\iota(f(a), f(b), f(c))+\iota(f(b), f(a), f(c)) \leq \iota(f(a), f(b), f(c))+f(b) \leq$ $f_{\iota}(R)+f_{\iota}(S)$, hence $f\left(c+t_{T_{2}}\right)=f(c)+f\left(t_{T_{2}}\right) \leq f_{\iota}(R)+f_{\iota}(S)$. This shows that $f\left(t_{R+S}\right) \leq f_{\iota}(R)+f_{\iota}(S)$ holds at the end of the algorithm.

Let us set $\mathcal{R}_{0}(L)=L$ and $\mathcal{R}_{n+1}(L)=\mathcal{R}\left(\mathcal{R}_{n}(L)\right)$ for $n=0,1,2, \ldots$ Up to isomorphism we can assume that $\mathcal{R}_{n}(L)$ is a subsemilattice of $\mathcal{R}_{n+1}(L)$. Let us set $\mathcal{D}(L)=\bigcup_{n=0}^{\infty} \mathcal{R}_{n}(L)$. Then every semilattice homomorphism $f: L \rightarrow M$ (with M distributive having an interpolant ι) can be extended to a homomorphism $f_{[l]}: \mathcal{D}(L) \rightarrow M$, similarly as in 2.3.

Theorem 2.4. For every semilattice $L, \mathcal{D}(L)$ is distributive.
Proof. Let $x, y, z \in \mathcal{D}(L), x+y \geq z$. Let n be the least number such that $x, y, z \in$ $\mathcal{R}_{n}(L)$. We set $\iota(x, y, z)=\{(x, y, z),(0,0,0)\} \in \mathcal{R}_{n+1}(L)$. (If $x=y=z$ or $0 \in\{x, y, z\}$ then $\iota(x, y, z)=z$.) This defines an interpolant on $\mathcal{D}(L)$.

Let L be a 0 -subsemilattice of M. Then, obviously, $C(L)$ is a subset of $C(M)$ and $\mathcal{R}(L)$ is a 0 -subsemilattice of $\mathcal{R}(M)$. Moreover, the diagram

commutes, which means that natural embeddings $L \rightarrow \mathcal{R}(L)$ and $M \rightarrow \mathcal{R}(M)$ can be simultaneously regarded as inclusions. As a consequence we obtain

Lemma 2.5. If L is a 0 -subsemilattice of M then $\mathcal{D}(L)$ is a 0 -subsemilattice of $\mathcal{D}(M)$.

Further, let M be a directed union of its 0 -subsemilattices $L_{i}(i \in I)$. Then $C(M)$ is a directed union of its subsets $C\left(L_{i}\right)$ and therefore $\mathcal{R}(M)$ is a directed union of its 0 -subsemilattices $\mathcal{R}\left(L_{i}\right)$. Consequently we have

Lemma 2.6. If M is a directed union of its 0 -subsemilattices $L_{i}(i \in I)$ then $\mathcal{D}(M)$ is a directed union of its 0 -subsemilattices $\mathcal{D}\left(L_{i}\right)$.

3. Failure of WURP

Let Ω be a set and for every $\alpha \in \Omega$ let a_{0}^{α}, a_{1}^{α} be two different elements. Suppose moreover that the sets $\left\{a_{0}^{\alpha}, a_{1}^{\alpha}\right\},\left\{a_{0}^{\beta}, a_{1}^{\beta}\right\}$ are disjoint for any two $\alpha, \beta \in \Omega$. Let $L(\Omega)$ be the family of all $A \subseteq U=\left\{a_{0}^{\alpha} \mid \alpha \in \Omega\right\} \cup\left\{a_{1}^{\alpha} \mid \alpha \in \Omega\right\}$ that satisfy
(1) if $\left\{a_{0}^{\alpha}, a_{1}^{\alpha}\right\} \subseteq A$ for some α then $A=U$;
(2) if $A \neq U$ then A is finite.

It is clear that $L(\Omega)$ is a semilattice in which the join of two elements is either set-theoretical union or $1=U$. (In fact, $L(\Omega)$ is the free semilattice with generators satisfying $a_{0}^{\alpha}+a_{1}^{\alpha}=1$ for all α.)

Now let us consider the 0 -subsemilattice $L(2)$ of $L(\Omega)$ generated by the set $\left\{a_{0}^{0}, a_{1}^{0}, a_{0}^{1}, a_{1}^{1}\right\}(0,1 \in \Omega)$. Let G be the 0 -subsemilattice of $\mathcal{R}(L(2))$ generated by the elements
(1) $c^{00}=\left\{(0,0,0),\left(a_{0}^{0}, a_{1}^{0}, a_{0}^{1}\right),\left(a_{0}^{1}, a_{1}^{1}, a_{0}^{0}\right)\right\} ;$
(2) $c^{01}=\left\{(0,0,0),\left(a_{0}^{0}, a_{1}^{0}, a_{1}^{1}\right),\left(a_{1}^{1}, a_{0}^{1}, a_{0}^{0}\right)\right\}$;
(3) $c^{10}=\left\{(0,0,0),\left(a_{1}^{0}, a_{0}^{0}, a_{0}^{1}\right),\left(a_{0}^{1}, a_{1}^{1}, a_{1}^{0}\right)\right\}$;
(4) $c^{11}=\left\{(0,0,0),\left(a_{1}^{0}, a_{0}^{0}, a_{1}^{1}\right),\left(a_{1}^{1}, a_{0}^{1}, a_{1}^{0}\right)\right\}$.

Let $\mathbf{2}$ be the 2-element semilattice $\{0,1\}$. It is well known that, for a natural number $n, \mathbf{2}^{n}$ is the free 0 -semilattice with n generators $(1,0,0, \ldots, 0),(0,1,0, \ldots, 0), \ldots$ $(0,0,0, \ldots, 1)$.
Lemma 3.1. G is isomorphic to $\mathbf{2}^{4}$.
Proof. Since $\mathbf{2}^{4}$ is free, we have a homomorphism $\varphi: \mathbf{2}^{4} \rightarrow G$ with $\varphi(1,0,0,0)=$ $c^{00}, \varphi(0,1,0,0)=c^{01}, \varphi(0,0,1,0)=c^{10}, \varphi(0,0,0,1)=c^{11}$. Further we define the interpolant ι on $\mathbf{2}^{4}$ by $\iota(x, y, z)=x \wedge z$. ($\mathbf{2}^{4}$ is a lattice.) Let us consider the embed$\operatorname{ding} \psi: L(2) \rightarrow \mathbf{2}^{4}$ determined by $\psi\left(a_{0}^{0}\right)=(1,1,0,0), \psi\left(a_{1}^{0}\right)=(0,0,1,1), \psi\left(a_{0}^{1}\right)=$ $(1,0,1,0), \psi\left(a_{1}^{1}\right)=(0,1,0,1)$. By 2.3, ψ can be extended to $\psi_{\iota}: \mathcal{R}(L(2)) \rightarrow \mathbf{2}^{4}$. We have $\psi_{\iota}\left(c^{00}\right)=\iota\left(\psi\left(a_{0}^{0}\right), \psi\left(a_{1}^{0}\right), \psi\left(a_{0}^{1}\right)\right)+\iota\left(\psi\left(a_{0}^{1}\right), \psi\left(a_{1}^{1}\right), \psi\left(a_{0}^{0}\right)\right)=(1,0,0,0)+$ $(1,0,0,0)=(1,0,0,0)$ and similarly, $\psi_{\iota}\left(c^{01}\right)=(0,1,0,0), \psi_{\iota}\left(c^{10}\right)=(0,0,1,0)$, $\psi_{\iota}\left(c^{11}\right)=(0,0,0,1)$. This shows that ψ_{ι} is inverse to φ, hence it is an isomorphism.

Theorem 3.2. If $\operatorname{card}(\Omega) \geq \aleph_{2}$ then $\mathcal{D}(L(\Omega))$ does not have WURP at 1 .
Proof. For every $\alpha \in \Omega$ we have $a_{0}^{\alpha}+a_{1}^{\alpha}=1$. For contradiction, suppose that elements $c^{\alpha \beta}$ have required properties.

For any set $X \subseteq \Omega$ let $L(X)$ be the 0 -subsemilattice of $L(\Omega)$ generated by $\left\{a_{0}^{\alpha} \mid \alpha \in X\right\} \cup\left\{a_{1}^{\alpha} \mid \alpha \in X\right\}$. By 2.5 we have the canonical embedding $\mathcal{D}(L(X)) \rightarrow$ $\mathcal{D}(L(\Omega))$, which we regard as inclusion. Obviously, $L(\Omega)$ is a directed union of its 0 subsemilattices $L(X)$, where X runs through finite subsets of Ω. By $2.6, \mathcal{D}(L(\Omega))$ is a directed union of its 0 -subsemilattices $\mathcal{D}(L(X)), X$ finite. Hence, for every $\alpha, \beta \in \Omega$ there is a finite set $X_{\{\alpha, \beta\}}$ ($X_{\alpha \beta}$ for short) such that $c^{\alpha \beta}$ and $c^{\beta \alpha}$ belong to $\mathcal{D}\left(L\left(X_{\alpha \beta}\right)\right)$. By Kuratowski's theorem there is a 3-element set $3=\{0,1,2\} \subseteq \Omega$ such that $0 \notin X_{12}, 1 \notin X_{02}, 2 \notin X_{01}$.

Let us consider the map $f: L(\Omega) \rightarrow L(3) \subseteq \mathcal{D}(L(3))$ defined by

$$
f(A)=\left\{\begin{array}{l}
1 \quad \text { if } a_{1}^{\alpha} \in A \text { for some } \alpha \notin\{0,1,2\} \\
A \cap\left\{a_{0}^{0}, a_{0}^{1}, a_{0}^{2}, a_{1}^{0}, a_{1}^{1}, a_{1}^{2}\right\} \quad \text { otherwise } .
\end{array}\right.
$$

Now we define a special interpolant on $\mathcal{D}(L(3))$. Let G_{01} be the 0 -subsemilattice of $\mathcal{D}(L(3))$ described in 3.1. Let G_{02} and G_{12} be analogous subsemilattices using the elements a_{0}^{2}, a_{1}^{2}. Since all $G_{i j}$ are lattices, we can use the meet operation. Thus, for $x, y, z \in G_{i j}, z \leq x+y$, we set $\iota(x, y, z)=x \wedge z$. (The intersection is taken in $G_{i j}$. There is no ambiguity, since the intersection of two different $G_{i j}$ is a sublattice of both. For instance, $G_{01} \cap G_{02}=\left\{0,1, a_{0}^{0}, a_{1}^{0}\right\}$.) If $\{x, y, z\} \nsubseteq G_{01}, G_{02}, G_{12}$, we define $\iota(x, y, z)$ as in the proof of 2.4.

It is easy to see that f is a homomorphism. By 2.3 it can be extended to a homomorphism $f_{[l]}: \mathcal{D}(L(\Omega)) \rightarrow \mathcal{D}(L(3))$. We denote $d_{0}=f_{[l]}\left(c^{12}\right), d_{1}=f_{[l]}\left(c^{02}\right)$, $d_{2}=f_{[l]}\left(c^{01}\right)$.

The definition of $f_{[\iota]}$ implies that $d_{i} \in \mathcal{D}(L(3 \backslash\{i\}))$ for $i=0,1,2$. Indeed, by induction we can prove that $\mathcal{R}_{n}(L(\Omega \backslash\{i\}))$ is mapped by $f_{[\ell]}$ into $\mathcal{D}(L(3 \backslash\{i\}))$ for every n. In fact, the definition of ι ensures that $d_{0} \in G_{12}, d_{1} \in G_{02}$ and $d_{2} \in G_{01}$.

Since $f_{[\ell]}$ is a homomorphism, we have $d_{0} \leq a_{0}^{1}, a_{1}^{2}, d_{1} \leq a_{0}^{0}, a_{1}^{2}, d_{2} \leq a_{0}^{0}, a_{1}^{1}$. Further, we have the equalities $d_{0}+a_{1}^{1}+a_{0}^{2}=d_{1}+a_{1}^{0}+a_{0}^{2}=d_{2}+a_{1}^{0}+a_{0}^{1}=1$. In the Boolean algebra G_{12} there exists only one element d_{0} satisfying these requirements, namely
$d_{0}=\left\{(0,0,0),\left(a_{0}^{1}, a_{1}^{1}, a_{1}^{2}\right),\left(a_{1}^{2}, a_{0}^{2}, a_{0}^{1}\right)\right\}$.
For similar reasons,
$d_{1}=\left\{(0,0,0),\left(a_{0}^{0}, a_{1}^{0}, a_{1}^{2}\right),\left(a_{1}^{2}, a_{0}^{2}, a_{0}^{0}\right)\right\}$,
$d_{2}=\left\{(0,0,0),\left(a_{0}^{0}, a_{1}^{0}, a_{1}^{1}\right),\left(a_{1}^{1}, a_{0}^{1}, a_{0}^{0}\right)\right\}$.
From the inequality $c^{02} \leq c^{01}+c^{12}$ we obtain that $d_{1} \leq d_{0}+d_{2}$. But we can check directly that this is not true - a contradiction.

4. Free distributive extensions of semilattices - another version

In this section we present an alternative construction of a "free distributive extension" of a given semilattice L.

Let $(L,+)$ be a (join-) semilattice with 0 . Let us denote

$$
D_{0}(L)=\left\{\left(a_{0}, a_{1}, b_{0}, b_{1}\right) \in L^{4} \mid a_{0}+a_{1}=b_{0}+b_{1}\right\}
$$

Further we denote

$$
D(L)=\left(D_{0}(L) \times\{0,1\} \times\{0,1\}\right) \cup L
$$

Instead of $\left(\left(a_{0}, a_{1}, b_{0}, b_{1}\right), i, j\right)$ we shall write $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i j}$. Moreover, if $i, j \in$ $\{0,1\}$, then we denote by i^{\prime} the other element of $\{0,1\}$ different from i and similarly j^{\prime} is the other element of $\{0,1\}$ different from j. A finite set $R \subseteq D(L)$ is called reduced if the following conditions hold:
(1) R contains exactly one element of L; this element x will be denoted by t_{R};
(2) if $i \in\{0,1\}$, then $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i 0},\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i 1}$ do not belong to R simultaneously;
(3) if $j \in\{0,1\}$, then $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{0 j},\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{1 j}$ do not belong to R simultaneously;
(4) if $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i j} \in R$, then $a_{0} \not \leq t_{R}, a_{1} \not \leq t_{R}, b_{0} \not \leq t_{R}, b_{1} \not \leq t_{R}$.

Let $\mathcal{Q}(L)$ be the family of all reduced sets. We define an order relation on $\mathcal{Q}(L)$ by $R \leq S$ if and only if $t_{R} \leq t_{S}$ and, moreover,

$$
\text { for every } \quad\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i j} \in R \backslash S, \quad \text { either } \quad a_{i} \leq t_{S} \quad \text { or } \quad b_{j} \leq t_{S} .
$$

Lemma 4.1. $(\mathcal{Q}(L), \leq)$ is a semilattice. The supremum $R+S$ can be computed by the following algorithm.
(i) Set $T_{0}=R \cup S$. If $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i 0} \in T_{0}$ and $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i 1} \in T_{0}$ for some $i \in\{0,1\}$, then include also a_{i} to the set T_{0}. If $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{0 j} \in T_{0}$ and $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{1 j} \in T_{0}$ for some $j \in\{0,1\}$, then include b_{j} to T_{0}. After all such inclusions we obtain a set T_{1}.
(ii) Let x_{1}, \ldots, x_{n} be all elements of $L \cap T_{1}$. We replace all these elements by the single element $\sum x_{i}$ and denote the resulting set by T_{2}.
(iii) If there is $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i j} \in T_{2}$ and $a_{i^{\prime}} \leq t_{T_{2}}$, then replace the elements $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i j}$, $t_{T_{2}}$ by the element $b_{j}+t_{T_{2}}$. If there is $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i j} \in$ T_{2} and $b_{j^{\prime}} \leq t_{T_{2}}$, then replace $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i j}$ and $t_{T_{2}}$ by $a_{i}+t_{T_{2}}$. (Of course, this changes the value of $t_{T_{2}}$.) We repeat this procedure until no such situation occurs. Let T_{3} be the resulting set.
(iv) $R+S$ is obtained from T_{3} by deleting all elements $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i j}$ such that either $a_{i} \leq t_{T_{3}}$ or $b_{j} \leq t_{T_{3}}$.
Proof. I. First we show that $R+S \in \mathcal{Q}(L)$. The condition (1) is ensured on the step (ii) and remains valid after performing steps (iii) and (iv). The conditions (2) and (3) are satisfied because of the step (i). The condition $a_{i^{\prime}}, b_{j^{\prime}} \not \leq t_{R+S}$ for every $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i j} \in R+S$ holds because of the step (iii) and the conditions $a_{i}, b_{j} \not \leq t_{R+S}$ hold because of the step (iv) of our algorithm.
II. Now we show that $R \leq R+S$. (The proof that $S \leq R+S$ is similar.) Because of (ii) we have $t_{R} \leq t_{R+S}$. Suppose that $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i j} \in R \backslash(R+S)$. Since $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i j} \in R \cup S$, the six-tuple $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i j}$ must have been deleted in some step of the algorithm. If this happened in step (iii), then either $a_{i}+t_{T_{2}} \leq t_{R+S}$ or $b_{j}+t_{T_{2}} \leq t_{R+S}$. If this happened in step (iv), the case is trivial.
III. Let $Q \in \mathcal{Q}(L), R \leq Q, S \leq Q$. We are going to show that $R+S \leq Q$. Let $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i j} \in(R+S) \backslash Q$. Since only elements of L can appear in $R+S$ without being already in $R \cup S$, we get that $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i j} \in R \cup S$. Thus either $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i j} \in R \backslash Q$ or $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i j} \in S \backslash Q$. In both cases, either $a_{i} \leq t_{Q}$ or $b_{j} \leq t_{Q}$.

It remains to prove $t_{R+S} \leq t_{Q}$. We have that $t_{R}+t_{S} \leq t_{Q}$. First of all we prove that for every element $x \in T_{1} \cap L$ we get $x \leq t_{Q}$. So suppose that $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i 0},\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i 1} \in R \cup S$. We get that the elements $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i 0}$ and $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i 1}$ cannot be simultaneously in Q since Q is reduced. If none of the elements $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i 0},\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i 1}$ is contained in Q, then (since $R, S \leq Q$) we get that either $a_{i} \leq t_{Q}$ or $b_{0}, b_{1} \leq t_{Q}$. But in the latter case also $a_{i} \leq b_{0}+b_{1} \leq t_{Q}$. In the remaining case, one of the elements, say $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i 0}$ belongs to Q and $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i 1} \notin Q$. Again, the assumption $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i 1} \notin Q$ implies that either $a_{i} \leq t_{Q}$ or $b_{1} \leq t_{Q}$, which (together with $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i 0} \in Q$) contradicts the condition (4) of the definition of reduced sets for Q. Thus in each case $a_{i} \leq t_{Q}$. The case $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{0 j},\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{1 j} \in R \cup S$ is treated similarly. Hence for every $x \in T_{1} \cap L$ we get $x \leq t_{Q}$. But then also their sum is less than or equal to t_{Q}, hence $t_{T_{2}} \leq t_{Q}$.

The element $t_{T_{2}}$ can be further increased at step (iii). If this is the case suppose that $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i j} \in T_{2}$ and $a_{i^{\prime}} \leq t_{T_{2}} \leq t_{Q}$. Thus $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i j} \notin Q$ because of condition (4). Then either $a_{i} \leq t_{Q}$ or $b_{j} \leq t_{Q}$. In the former case $b_{j} \leq a_{0}+a_{1}=$ $a_{i}+a_{i^{\prime}} \leq t_{Q}$. Thus in all cases $b_{j}+t_{T_{2}} \leq t_{Q}$. The other case of step (iii) is treated similarly.

Since $t_{R+S}=t_{T_{3}}$, we have proved that $t_{R+S} \leq t_{Q}$.
Lemma 4.2. The semilattice L is a 0 -subsemilattice of $\mathcal{Q}(L)$. (We identify $x \in L$ with $\{x\} \in \mathcal{Q}(L)$.)
Proof. Obvious.
By a refinement operator on a semilattice L we mean a collection of four functions $\iota_{i j}: D_{0}(L) \rightarrow L, i, j=0,1$, satisfying the conditions $\iota_{i 0}\left(a_{0}, a_{1}, b_{0}, b_{1}\right)+$ $\left.\iota_{i 1}\left(a_{0}, a_{1}, b_{0}, b_{1}\right)\right)=a_{i}$ and $\iota_{0 j}\left(a_{0}, a_{1}, b_{0}, b_{1}\right)+\iota_{1 j}\left(a_{0}, a_{1}, b_{0}, b_{1}\right)=b_{j}$ for every
$i, j=0,1$. It is obvious that a refinement operator exists on a semilattice L if and only if L is distributive. Also notice that a refinement operator on a distributive semilattice L is not determined uniquely.
Theorem 4.3. Let $f: L \rightarrow M$ be a semilattice homomorphism. Suppose that $\iota_{i j}$, $i, j=0,1$, is a refinement operator on M. Let us define a map $f_{\iota}: \mathcal{Q}(L) \rightarrow M$ by

$$
f_{\iota}(R)=f\left(t_{R}\right)+\sum_{\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i j} \in R} \iota_{i j}\left(f\left(a_{0}\right), f\left(a_{1}\right), f\left(b_{0}\right), f\left(b_{1}\right)\right) .
$$

Then f_{ι} is a semilattice homomorphism and $f_{\iota} \upharpoonright L=f$.
Proof. For every $\left(a_{0}, a_{1}, b_{0}, b_{1}\right) \in D_{0}(L)$ we have that $\left(f\left(a_{0}\right), f\left(a_{1}\right), f\left(b_{0}\right), f\left(b_{1}\right)\right) \in$ $D_{0}(M)$, so f_{ι} is well defined. Moreover, $f_{\iota} \upharpoonright L=f$.

To show that $f_{\iota}(R)+f_{\iota}(S) \leq f_{\iota}(R+S)$ for any $R, S \in \mathcal{Q}(L)$ we have to consider how the algorithm 4.1. computes $R+S$ from $R \cup S$. First of all we introduce the following notation. If $T \subseteq D(L)$, then we set $V=T \cap L$. Thus if $T \subseteq D(L)$ is reduced, then $|V|=1$.

The reduced set $R+S$ is computed from $T_{0}=R \cup S$ by the algorithm 4.1. We start with $V_{0}=\left\{t_{R}, t_{S}\right\}$. Thus

$$
f_{\iota}(R)+f_{\iota}(S)=\sum_{x \in V_{0}} f(x)+\sum_{\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i j} \in R \cup S} \iota_{i j}\left(f\left(a_{0}\right), f\left(a_{1}\right), f\left(b_{0}\right), f\left(b_{1}\right)\right) .
$$

In the first step of the algorithm, any pair of elements $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i 0}$ and $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i 1}$ in $R \cup S$ is replaced in T_{1} by the single element $a_{i} \in L \cap T_{1}=$ V_{1}. Since $\iota_{i 0}\left(f\left(a_{0}\right), f\left(a_{1}\right), f\left(b_{0}\right), f\left(b_{1}\right)\right)+\iota_{i 1}\left(f\left(a_{0}\right), f\left(a_{1}\right), f\left(b_{0}\right), f\left(b_{1}\right)\right)=f\left(a_{i}\right)$ the replacement does not change the value of the right-hand side of the last displayed equality. Since the same is true for the replacement of $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{0 j}$ and $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{1 j}$ by b_{j}, we get

$$
f_{\iota}(R)+f_{\iota}(S)=\sum_{x \in V_{1}} f(x)+\sum_{\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i j} \in T_{1}} \iota_{i j}\left(f\left(a_{0}\right), f\left(a_{1}\right), f\left(b_{0}\right), f\left(b_{1}\right)\right)
$$

The second step of the algorithm changes only the set V_{1}, all the elements of V_{1} are replaced by their sum denoted by $t_{T_{2}}$. Since $f\left(t_{T_{2}}\right)=\sum_{x \in V_{1}} f(x)$, we get

$$
f_{\iota}(R)+f_{\iota}(S)=f\left(t_{T_{2}}\right)+\sum_{\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i j} \in T_{2}} \iota_{i j}\left(f\left(a_{0}\right), f\left(a_{1}\right), f\left(b_{0}\right), f\left(b_{1}\right)\right)
$$

The third step of the algorithm replaces any $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i j} \in T_{2}$ such that $a_{i^{\prime}} \leq t_{T_{2}}$ and the element $t_{T_{2}}$ by the single element $b_{j}+t_{T_{2}}$. Since $f\left(b_{j}\right)+$ $f\left(t_{T_{2}}\right)=\iota_{0 j}\left(f\left(a_{0}\right), f\left(a_{1}\right), f\left(b_{0}\right), f\left(b_{1}\right)\right)+\iota_{1 j}\left(f\left(a_{0}\right), f\left(a_{1}\right), f\left(b_{0}\right), f\left(b_{1}\right)\right)+f\left(t_{T_{2}}\right) \leq$ $\iota_{i j}\left(f\left(a_{0}\right), f\left(a_{1}\right), f\left(b_{0}\right), f\left(b_{1}\right)\right)+f\left(a_{i^{\prime}}\right)+f\left(t_{T_{2}}\right)=\iota_{i j}\left(f\left(a_{0}\right), f\left(a_{1}\right), f\left(b_{0}\right), f\left(b_{1}\right)\right)+$ $f\left(t_{T_{2}}\right) \leq f\left(b_{j}\right)+f\left(t_{T_{2}}\right)$, the replacement again does not change the value of the right-hand side of the last displayed equality. Since this is true for any other replacement made in the third step, we get

$$
f_{\iota}(R)+f_{\iota}(S)=f\left(t_{T_{3}}\right)+\sum_{\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i j} \in T_{3}} \iota_{i j}\left(f\left(a_{0}\right), f\left(a_{1}\right), f\left(b_{0}\right), f\left(b_{1}\right)\right) .
$$

Finally, in the last step of the algorithm we remove from the set T_{3} all the elements $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i j}$ such that either $a_{i} \leq t_{T_{3}}$ or $b_{j} \leq t_{T_{3}}$. In this case either $\iota_{i j}\left(f\left(a_{0}\right), f\left(a_{1}\right), f\left(b_{0}\right), f\left(b_{1}\right)\right) \leq f\left(a_{i}\right) \leq f\left(t_{T_{3}}\right)$ or $\iota_{i j}\left(f\left(a_{0}\right), f\left(a_{1}\right), f\left(b_{0}\right), f\left(b_{1}\right)\right) \leq$
$f\left(b_{j}\right) \leq f\left(t_{T_{3}}\right)$. None of the removals changes the value of the right-hand side of the last equality. But after the removals we obtain the reduced set $R+S$, hence

$$
f_{\iota}(R)+f_{\iota}(S)=f_{\iota}(R+S)
$$

Now let us set $\mathcal{Q}_{0}(L)=L$ and $\mathcal{Q}_{n+1}(L)=\mathcal{Q}\left(\mathcal{Q}_{n}(L)\right)$ for a non-negative integer n. Thus every $\mathcal{Q}_{n}(L)$ is a subsemilattice of $\mathcal{Q}_{n+1}(L)$ by Lemma 4.2. Let us set $\mathcal{C}(L)=\bigcup_{n} \mathcal{Q}_{n}(L)$. Thus given a distributive semilattice M, a refinement operator $\iota_{i j}, i, j=0,1$, and a semilattice homomorphism $f: L \rightarrow M$, then by repeated application of Theorem 4.3 we get that there exists a special homomorphism $f_{[l]}$: $\mathcal{C}(L) \rightarrow M$ extending f.

Theorem 4.4. For every semilattice $L, \mathcal{C}(L)$ is distributive.
Proof. Let $a_{0}, a_{1}, b_{0}, b_{1} \in \mathcal{C}(L)$ be such that $a_{0}+a_{1}=b_{0}+b_{1}$. There exists n such that $a_{0}, a_{1}, b_{0}, b_{1} \in \mathcal{Q}_{n}(L)$, hence $\left(a_{0}, a_{1}, b_{0}, b_{1}\right) \in D_{0}\left(\mathcal{Q}_{n}(L)\right)$. If $0 \notin\left\{a_{0}, a_{1}, b_{0}, b_{1}\right\}$, we set $\iota_{i j}\left(a_{0}, a_{1}, b_{0}, b_{1}\right)=\left\{\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i j}, 0\right\} \in \mathcal{Q}_{n+1}(L), i, j \in 0,1$. Applying the algorithm 4.1 we easily compute that $\left\{\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i 0}, 0\right\}+\left\{\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{i 1}, 0\right\}=$ $\left\{a_{i}\right\}$ and $\left\{\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{0 j}, 0\right\}+\left\{\left(a_{0}, a_{1}, b_{0}, b_{1}\right)_{1 j}, 0\right\}=\left\{b_{j}\right\}$ in $\mathcal{Q}_{n+1} \subseteq \mathcal{C}(L)$. If $a_{0}=0$ (the other cases are similar), we set $\iota_{00}\left(a_{0}, a_{1}, b_{0}, b_{1}\right)=\iota_{01}\left(a_{0}, a_{1}, b_{0}, b_{1}\right)=$ $0, \iota_{10}\left(a_{0}, a_{1}, b_{0}, b_{1}\right)=b_{0}, \iota_{11}\left(a_{0}, a_{1}, b_{0}, b_{1}\right)=b_{1}$. We have a refinement operator on L.

It is easy to see that assertions analogous to 2.5 and 2.6 hold also for $\mathcal{C}(L)$.

5. Failure of WURP in some $\mathcal{C}(L)$

Let $L(\Omega)$ be the same lattice as in the section 3 . We consider the 0 -subsemilattice $L(2)$ of $L(\Omega)$ generated by the elements $\left\{a_{0}^{0}, a_{1}^{0}, a_{0}^{1}, a_{1}^{1}\right\}(0,1 \in \Omega)$. Let G be the 0 -subsemilattice of $\mathcal{Q}(L(2))$ generated by the elements $c^{i j}=\left\{0,\left(a_{0}^{0}, a_{1}^{0}, a_{0}^{1}, a_{1}^{1}\right)_{i j}\right\}$, $i, j=0,1$.

Lemma 5.1. G is isomorphic to $\mathbf{2}^{4}$.
Proof. Let $\varphi: \mathbf{2}^{4} \rightarrow G$ and $\psi: L(2) \rightarrow \mathbf{2}^{4}$ be as in the proof of 3.1. Further we define the refinement operator $\iota_{i j}$ on $\mathbf{2}^{4}$ by $\iota_{i j}\left(x_{0}, x_{1}, y_{0}, y_{1}\right)=x_{i} \wedge y_{j}$. By $4.3, \psi$ can be extended to $\psi_{\iota}: \mathcal{Q}(L(2)) \rightarrow \mathbf{2}^{4}$. We have $\psi_{\iota}\left(c^{i j}\right)=\iota_{i j}\left(\psi\left(a_{0}^{0}\right), \psi\left(a_{1}^{0}\right), \psi\left(a_{0}^{1}\right), \psi\left(a_{1}^{1}\right)\right)+$ $\psi(0)=\psi\left(a_{i}^{0}\right) \wedge \psi\left(a_{j}^{1}\right)$. Hence $\psi_{\iota}\left(c^{00}\right)=(1,0,0,0), \psi \iota\left(c^{01}\right)=(0,1,0,0), \psi_{\iota}\left(c^{10}\right)=$ $(0,0,1,0)$ and $\psi_{\iota}\left(c^{11}\right)=(0,0,0,1)$. This shows that ψ_{ι} is inverse to φ, hence it is an isomorphism.

Theorem 5.2. If $\operatorname{card}(\Omega) \geq \aleph_{2}$ then $\mathcal{C}(L(\Omega))$ does not have WURP at 1 .
Proof. We proceed similarly as in 3.2. Let us consider the same map $f: L(\Omega) \rightarrow$ $L(3) \subseteq \mathcal{C}(L(3))$ as in 3.2. Now we define a special refinement operator on $\mathcal{C}(L(3))$. Let G_{01} be the 0 -subsemilattice of $\mathcal{C}(L(3))$ described in 5.1. Let G_{02} and G_{12} be analogous subsemilattices defined by the elements $a_{0}^{0}, a_{1}^{0}, a_{0}^{2}, a_{1}^{2}$ and $a_{0}^{1}, a_{1}^{1}, a_{0}^{2}, a_{1}^{2}$, resp. Since all $G_{k l}$ and their intersections are lattices, we can use the meet operation. Thus, for $x_{0}, x_{1}, y_{0}, y_{1} \in G_{k l}, x_{0}+x_{1}=y_{0}+y_{1}$, we can set $\iota_{i j}\left(x_{0}, x_{1}, y_{0}, y_{1}\right)=$ $x_{i} \wedge y_{j}$. (The meet is taken in $G_{k l}$.) If $\left\{x_{0}, x_{1}, y_{0}, y_{1}\right\} \nsubseteq G_{01}, G_{02}, G_{12}$, we define $\iota_{i j}\left(x_{0}, x_{1}, y_{0}, y_{1}\right)=\left\{0,\left(x_{0}, x_{1}, y_{0}, y_{1}\right)_{i j}\right\}$, similarly as in the proof of 4.4.

It is easy to verify that f is a homomorphism. By remarks after 4.3 it can be extended to a homomorphism $f_{[l]}: \mathcal{C}(L(\Omega)) \rightarrow \mathcal{C}(L(3))$. We denote $d_{0}=f_{[l]}\left(c^{12}\right)$, $d_{1}=f_{[\iota]}\left(c^{02}\right), d_{2}=f_{[\iota]}\left(c^{01}\right)$. Again we have $d_{0} \in G_{12}, d_{1} \in G_{02}$ and $d_{2} \in G_{01}$.

Since $f_{[\ell]}$ is a homomorphism, we have $d_{0} \leq a_{0}^{1}, a_{1}^{2}, d_{1} \leq a_{0}^{0}, a_{1}^{2}, d_{2} \leq a_{0}^{0}, a_{1}^{1}$. Further, we have the equalities $d_{0}+a_{1}^{1}+a_{0}^{2}=d_{1}+a_{1}^{0}+a_{0}^{2}=d_{2}+a_{1}^{0}+a_{0}^{1}=1$. In the Boolean algebra G_{12} (isomorphic to $\mathbf{2}^{4}$) there exists only one element d_{0} satisfying these requirements, namely
$d_{0}=\left\{0,\left(a_{0}^{1}, a_{1}^{1}, a_{0}^{2}, a_{1}^{2}\right)_{01}\right\}$.
For similar reasons,
$d_{1}=\left\{0,\left(a_{0}^{0}, a_{1}^{0}, a_{0}^{2}, a_{1}^{2}\right)_{01}\right\}$,
$d_{2}=\left\{0,\left(a_{0}^{0}, a_{1}^{0}, a_{0}^{1}, a_{1}^{1}\right)_{01}\right\}$.
From the inequality $c^{02} \leq c^{01}+c^{12}$ we obtain that $d_{1} \leq d_{0}+d_{2}$. But we can check directly that $d_{0}+d_{2}=\left\{0,\left(a_{0}^{1}, a_{1}^{1}, a_{0}^{2}, a_{1}^{2}\right)_{01},\left(a_{0}^{0}, a_{1}^{0}, a_{0}^{1}, a_{1}^{1}\right)_{01}\right\}$. Using definition of order on $\mathcal{Q}(L(3)))$ we see that $d_{1}=\left\{0,\left(a_{0}^{0}, a_{1}^{0}, a_{0}^{2}, a_{1}^{2}\right)_{01}\right\} \not \leq d_{0}+d_{2}$ - a contradiction.

References

[1] K. Kuratowski, Sur une caractérisation des alephs, Fundamenta Math. 38 (1951), 14-17.
[2] M. Ploščica, J. Tůma, and F. Wehrung Congruence lattices of free lattices in nondistributive varieties, Colloquium Math., to appear.
[3] F. Wehrung, Non-measurability properties of interpolation vector spaces, Israel Journal of Math., to appear.
[4] F. Wehrung, A uniform refinement property of certain congruence lattices, preprint.
Mathematical Institute, Slovak Academy of Sciences, Grešákova 6, 04001 Košice, Slovakia

E-mail address: ploscica@linux1.saske.sk
Department of Algebra, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 18600 Praha 8, Czech Republic

E-mail address: tuma@karlin.mff.cuni.cz

[^0]: The first author was supported by the Slovak VEGA grant 1230/97, the second author was supported by GAČR, grant no. 201/95/0632.

