
AFFINE COMPLETENESS OF KLEENE ALGEBRAS II

Miroslav Haviar and Miroslav Ploščica

Abstract. A characterization of affine complete algebras in the variety of all Kleene
algebras was given in [8]. Also local polynomial functions of Kleene algebras and
locally affine complete algebras were characterized there. In this paper alternative
proofs to these three main results of [8] are presented. Also examples illustrated the
results are given.

1. Introduction

A polynomial function of an algebra A is a function that can be obtained by
composition of the basic operations of A, the projections and the constant func-
tions. A local polynomial function of A is a function which can be represented by
a polynomial function on any finite subset of its domain. A well-known fact about
polynomial and local polynomial functions of any algebra A is that they are com-
patible functions in the following sense: a function f : An → A is compatible if,
for any congruence θ of A, (ai, bi) ∈ θ, i = 1, . . . , n, implies that

(f(a1, . . . , an), f(b1, . . . , bn)) ∈ θ.

An algebra in which (local) polynomial functions are the only compatible func-
tions is called (locally) affine complete. (The concept ‘locally affine complete’ has
sometimes also another meaning in the literature - see e.g. [11].) The problem
of characterizing algebras which are affine complete was originally formulated in
[6]. Since every algebra is a reduct of an affine complete algebra (for example, of
that which contains all its compatible functions among the basic operations) and
hence affine complete algebras are in general very diverse, in [3] the problem was re-
ducted into the following formulation: characterize affine complete algebras in your
favourite variety. Many varieties for which the problem has already been solved
are mentioned in [3] or [9].

In [8] we characterized (locally) affine complete algebras in the variety of all
Kleene algebras. Previously, only a finite case was entirely solved: a finite Kleene
algebra is affine complete if and only if it is a Boolean algebra (see [7]). Moreover, in
[8] we characterized locally polynomial functions of Kleene algebras as those which
preserve the congruences and one important binary relation called ‘uncertainty
order’.
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The aim of this paper is to give alternative proofs to the main three results of the
preceding paper [8] which are presented here in Theorems 3.3, 3.4 and 3.9. Close
to our considerations are some ideas of the papers [5], [7]-[10] and [12]-[13]. We use
several preliminary results of [8] which are summarized in section 2. Our alternative
approach to the main results of [8] starts in section 3 with crucial Lemmas 3.1 and
3.2. In addition to [8] we present examples at the end which illustrate the results.

2. Preliminaries

First we recall a few basic facts about Kleene algebras. For more information
we refer the reader, for example, to [1] or [2].

A Kleene algebra is an algebra (K,∨,∧,′ , 0, 1) where (K,∨,∧, 0, 1) is a bounded
distributive lattice, ′ is a unary operation of complementation and the identities

0′ = 1 , x′′ = x , (x ∨ y)′ = x′ ∧ y′ , (x ∧ x′) ∨ (y ∨ y′) = y ∨ y′

and their duals are satisfied. Every Boolean algebra is clearly a Kleene algebra, a
smallest Kleene algebra which is not Boolean is 3 = {0, a, 1} with 0 < a < 1 and
a′ = a. The algebra 3 is subdirectly irreducible and generates the variety of Kleene
algebras.

Two subsets of a Kleene algebra K often play an important role: a subset
K∨ = {x ∨ x′|x ∈ K}, which is a filter of the distributive lattice K, and a dually
defined ideal K∧. The complementation operation clearly induces an antiisomor-
phism between K∨ and K∧. Further, the union K∨ ∪ K∧ is a subalgebra of the
Kleene algebra K. The variety of Kleene algebras has the congruence extension
property and we have the following lemma.

1.1 Lemma ([8; 1.1]). For every Kleene algebra K, any congruence of the lattice
K∨ is a restriction of some congruence of the Kleene algebra K.

In [7] it was proved that a Kleene algebra K with a finite filter K∨ is (locally)
affine complete if and only if it is a Boolean algebra. To characterize affine com-
plete Kleene algebras in general, we will need the following generalization of affine
completeness: if A is a subalgebra of an algebra B then A is affine complete in B if
every compatible function on A can be interpolated by a polynomial of B. (Hence
we allow elements of B to be used as constants to represent compatible functions
of A.)

We can establish a canonical way of defining any n-ary polynomial function of
a Kleene algebra in the following way: to every pair of subsets α0, α1 ⊆ n =
{1, . . . , n} we assign the n-ary Kleene term

Cα(x1, . . . , xn) =
( ∨

i∈α0

xi

) ∨ ( ∨

i∈α1

x′i
)
.

¿From the axioms of Kleene algebras it follows that that every n-ary Kleene poly-
nomial can be represented as a meet of so-called elementary polynomials kα ∨ Cα

where kα are constants from K.
Let K be an affine complete Kleene algebra. Let g : (K∨)n → K∨ be a compati-

ble function of the lattice K∨. We can extend the function g to a compatible func-
tion
f : Kn → K by

f(x1, . . . , xn) = g(x1 ∨ x′1, . . . , xn ∨ x′n) for all x1, . . . , xn ∈ K.
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This function must be polynomial, hence representable as a meet of elementary
polynomials of K. One can show that its restriction to K∨, which is the function g,
is therefore a lattice polynomial (obtained by omitting all x′i in the representation
of f). Hence we get:

2.1 Lemma. Let K be a Kleene algebra. If K is affine complete, then K∨ and
K∧ are (as lattices) affine complete in K.

The following lemma, which is a special case of [7; Theorem 1], can be proved
similarly.

2.2 Lemma ([8; 2.2]). If K is a locally affine complete Kleene algebra then the
lattices K∨ and K∧ are locally affine complete. ¤

To describe situations in which the lattices K∨ and K∧ are affine complete in
the lattice K we will use the following two concepts introduced in [12] (see also
[9]): a filter F of a distributive lattice L is almost principal if for every x ∈ L the
filter F∩ ↑x = {y ∈ F | y ≥ x} is principal, i.e. has a smallest element. An almost
principal ideal of L is defined dually. Further, a filter or an ideal of L is proper if it
is not equal to L while an interval of L is proper if it contains at least two elements.

2.3 Lemma ([8; 2.3]). Let D be a sublattice of a distributive lattice L. Suppose
that D is affine complete in L. Then

(B) D does not contain a proper Boolean interval;
(F) for every proper almost principal filter F in D there exists b ∈ L such that

F = D∩ ↑b;
(I) for every proper almost principal ideal I in D there exists c ∈ L such that

I = D∩ ↓c. ¤

Let us summarize the known results for distributive lattices.

2.4 Theorem.

(1) A bounded distributive lattice is affine complete if and only if it does not
contain a proper Boolean interval ( [5]).

(2) A distributive lattice is locally affine complete if and only if it does not
contain a proper Boolean interval ( [4; p. 102]).

(3) A distributive lattice is affine complete if and only if the following conditions
are satisfied:

(i) it does not contain a proper Boolean interval;
(ii) it does not contain a proper almost principal ideal without a largest

element;
(iii) it does not contain a proper almost principal filter without a smallest

element ( [13; 2.7]). ¤

Throughout the paper we assume that the Kleene algebra K is embedded in 3I ,
a power of the Kleene algebra 3 = {0, a, 1}. Accordingly, we will write the elements
of K in the form x = (xi)i∈I . Clearly, s ∈ K∨ iff si ∈ {a, 1} for every i ∈ I.

As the proofs of the following two lemmas from [8] are very short, we include
them here.

2.5 Lemma. Let f : Kn → K be compatible, xj , yj ∈ K, j = 1, . . . , n and i ∈ I.
Then x1i = y1i, . . . , xni = yni implies f(x1, . . . , xn)i = f(y1, . . . , yn)i.
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Proof. Consider the compatibility relative to kernel congruence of the i-th projec-
tion. ¤

For any s ∈ K∨ we define the subalgebra Ks of K:

Ks = {x ∈ K|x ∨ x′ ≥ s} .

2.6 Lemma. Let s ∈ K∨. If two n-ary compatible functions of K coincide on
{0, s, 1}n then they coincide on (Ks)n.

Proof. Let f and g coincide on {0, s, 1}n. We prove that

f(x1, . . . , xn)i = g(x1, . . . , xn)i

for every x1, . . . , xn ∈ Ks and i ∈ I.
First we define for every xj the element yj ∈ {0, s, 1} having the same i-th

component as xj :

yj =





0 if xji = 0;
1 if xji = 1;
s if xji = a .

Now by Lemma 2.5,

f(x1, . . . , xn)i = f(y1, . . . , yn)i = g(y1, . . . , yn)i = g(x1, . . . , xn)i. ¤

The uncertainty order of a Kleene algebra K is the binary relation v defined by

x v y ⇐⇒ x ∧ s ≤ y ≤ x ∨ s′ for some s ∈ K∨.

Hence the uncertainty order on K = 3 is the relation

{(0, 0), (a, a), (1, 1), (0, a), (1, a)}.

This relation on 3 can really be found under the name ‘uncertainty order’ in the
literature.

2.7 Lemma ([8; 3.4]). The uncertainty order on K is inherited from the uncer-
tainty order on 3, i.e. x v y iff xi v yi for every i ∈ I. ¤

It can easily be seen that v is indeed a partial order relation on K which is a
subalgebra of K ×K. Hence every local polynomial function preserves v.

2.8 Lemma ([8; 3.7]). If all compatible functions on the lattice K∨ are order
preserving then all compatible functions on the Kleene algebra K preserve v. ¤

3. The results - an alternative approach

In this section we give alternative proofs to the three main results presented in
[8]. Our approach is based on calculations presented in the following two lemmas.
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3.1 Lemma. If a compatible function f : K → K preserves v then, for every
s, t ∈ K∨,

(1) f(1) ∧ s ≤ f(s) ≤ f(1) ∨ s′;
(2) f(0) ∧ s′ ≤ f(s) ≤ f(0) ∨ s;
(3) f(s′) ∧ s′ ≤ f(s) ≤ f(s′) ∨ f(1);
(4) f(s) ≤ s ∨ f(t);
(5) if s ≥ f(0) or s ≥ f(1) then s ≥ f(s).

Proof. We prove that f(1)i ∧ si ≤ f(s)i ≤ f(1)i ∨ s′i for every i ∈ I. If si = 1 then
f(s)i = f(1)i by 2.5. Let si = a. Now the case f(s)i = a is trivial, let f(s)i ∈ {0, 1}.
Since 1 v s, we have f(1)i v f(s)i, which is only possible if f(s)i = f(1)i. Thus,
(1) is proved.

(2) is trivial on those components i where si = 1 or f(s)i = a. The remaining
case is si = a and f(s)i ∈ {0, 1}. Then, by 2.5, f(s)i = f(s′)i and from 0 v s′ we
deduce that f(0)i = f(s)i.

To see (3), notice that si = a implies f(s′)i = f(s)i, while si = 1 implies
f(s)i = f(1)i.

It is clear that f(s)i ≤ si ∨ f(t)i if si = 1 or si = ti or f(s)i ≤ a. The remaining
case is si = a, f(si) = 1 and ti = 1. Then 1 v s implies that f(1)i v f(s)i = 1,
hence f(t)i = f(1)i = 1 = f(s)i. This proves (4).

(5) follows from (2) and (4). ¤

3.2. Lemma. If a compatible function f : K → K preserves v then, for every
s ∈ K∨,

f(s) =(f(s) ∧ f(0) ∧ f(1)) ∨ (f(1) ∧ s) ∨ ((f(s′) ∨ f(0) ∨ f(1)) ∧ s′) =

(f(1) ∨ s′) ∧ (f(s′) ∨ f(0) ∨ f(1)) ∧ ((f(s) ∧ f(0) ∧ f(1)) ∨ s).

Proof. The equality of the last two expressions follows from the distributivity, since
s′ ≤ s and f(s) ∧ f(0) ∧ f(1) ≤ f(1) ≤ f(s′) ∨ f(0) ∨ f(1).

Obviously, f(s) ≥ f(s)∧ f(0)∧ f(1). By 3.1 we have f(s) ≥ f(1)∧ s ≥ f(1)∧ s′,
f(s) ≥ f(0) ∧ s′ and f(s) ≥ f(s′) ∧ s′, hence f(s) ≥ (f(s) ∧ f(0) ∧ f(1)) ∨ (f(1) ∧
s) ∨ ((f(s′) ∨ f(0) ∨ f(1)) ∧ s′).

It remains to prove the inverse inequality. By 3.1, f(s) ≤ f(1) ∨ s′, f(s) ≤
f(s′) ∨ f(1), f(s) ≤ f(0) ∨ s and f(s) ≤ f(1) ∨ s and obviously f(s) ≤ f(s) ∨ s,
which completes the proof. ¤

The previous lemma will be used to characterize local polynomial functions of
Kleene algebras and consequently also locaally affine complete Kleene algebras.

3.3 Theorem ([8; 4.1]). Let f be an n-ary compatible function on a Kleene algebra
K. Then the following conditions are equivalent:

(1) f is a local polynomial function of K;
(2) f preserves the uncertainity order of K ;
(3) f can be interpolated by a polynomial on Ks for every s ∈ K∨.

Proof. Since v is a subalgebra of K ×K, we have (1) =⇒ (2). Clearly, every finite
subset of K is contained in some Ks , s ∈ K∨, which yields (3) =⇒ (1). Hence the
key implication is (2) =⇒ (3).
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By 2.6 it suffices to interpolate f on the set {0, s, 1}. We proceed by induc-
tion on arity n of f . The claim is obviously true for n = 0. Suppose now
that n > 0 and that the implication (2) =⇒ (3) is true for all functions of ar-
ity less than n. Hence, the (n − 1)-ary functions f(0, x2, . . . , xn), f(s, x2, . . . , xn),
f(s′, x2, . . . , xn), f(1, x2, . . . , xn) (of variables x2, . . . , xn) are representable by poly-
nomials p0, ps, ps′ , p1, respectively. Let us set

p(x1, . . . , xn) = (ps ∧ p0 ∧ p1) ∨ (p1 ∧ x1) ∨ (p0 ∧ x′1) ∨ ((ps′ ∨ p0 ∨ p1) ∧ x1 ∧ x′1).

We claim that p represents f on {0, s, 1}n. Let x1, . . . , xn ∈ {0, s, 1}. It is easy to see
that
p(x1, . . . , xn) = f(x1, . . . , xn) whenever x1 ∈ {0, 1}. Finally, for x1 = s we have
s′ ≤ s and therefore p(s, x2, . . . , xn) = (ps∧p0∧p1)∨ (p1∧ s)∨ ((ps′ ∨p0∨p1)∧ s′),
which is equal to f(s, x2, . . . , xn) by 3.2. (Apply 3.2 to the unary function g defined
by g(y) = f(y, x2, . . . , xn).) ¤
3.4 Theorem ([8; 4.2]). Let K be a Kleene algebra. The following are equivalent:

(1) K is locally affine complete;
(2) K∨ is a locally affine complete lattice;
(3) K∨ does not contain a proper Boolean interval.

Proof. The equivalence of (2) and (3) was given by 2.4(2). We stated (1) =⇒ (2)
in 2.2. By (2), every compatible function of the lattice K∨ is order preserving and
by 2.8 and the previous theorem, every compatible function on the Kleene algebra
K is a local polynomial function. ¤

Before characterizing affine complete Kleene algebras in general we can already
state the following special result.

3.5 Proposition ([8; 4.3]). Let K be a Kleene algebra such that K∨ has a smallest
element. The following are equivalent:

(1) K is affine complete;
(2) K∨ is an affine complete lattice;
(3) K∨ does not contain a proper Boolean interval.

Proof. The equivalence of (2) and (3) was given by 2.4(1). The implication (1) =⇒
(3) follows the fact that every affine complete algebra is locally affine complete
and from Theorem 3.4. If (3) holds, then the algebra K is locally affine complete
by 3.4 and hence by 2.6 every compatible function of K can be interpolated by
a polynomial function on any Ks. But clearly K = Ks where s is the smallest
element of K∨, which completes the proof. ¤

For a subset Y of an ordered set X we denote ↑ !Y = {x ∈ X | x ≥ y for some y ∈
Y } and ↓ !Y = {x ∈ X | x ≤ y for some y ∈ Y }.
3.6 Lemma ([8; 5.1]). Let f : K −→ K be a local polynomial function of a
Kleene algebra K. Then K∨∩ ↑ f(K∨) is an almost principal filter in K∨ and
K∧∩ ↓f(K∧) is an almost principal ideal in K∧.

Proof. Denote F = K∨∩ ↑ f(K∨) = {x ∈ K∨ | f(z) ≤ x for some z ∈ K∨}. We
show that, for x ∈ K∨,

x ∨ f(x) = min{y ∈ F | x ≤ y}.
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Clearly, x ≤ x ∨ f(x) ∈ F . Conversely, let x ≤ y ∈ F . Then y ≥ f(z) for some
z ∈ K∨. By Lemma 3.1, f(x) ≤ x ∨ f(z), hence x ∨ f(x) ≤ x ∨ f(z) ≤ y.

It remains to show that F is closed under meets. Let x, y ∈ F , z = x ∧ y,
t = min{u ∈ F | z ≤ u}. Then z ≤ t ≤ x, t ≤ y, thus z = t ∈ F . We showed that
F is an almost principal filter in K∨.

The other statement can be proved dually. ¤
Let P denote the set of all pairs α = (α0, α1) with α0, α1 ⊆ n, α0 ∩ α1 = ∅. We

introduce an order relation on P by α ≤ β iff α0 ⊆ β0 and α1 ⊆ β1.
Suppose now that a Kleene algebra K satisfies the following conditions:
(B) K∨ does not contain a proper Boolean interval;
(F) for every proper almost principal filter F in K∨ there exists b ∈ K such

that F = K∨∩ ↑b.
Since ′ is a dual automorphism of the lattice K, (F) is equivalent to the dual
condition

(I) for every proper almost principal ideal I in K∧ there exists c ∈ K such that
I = K∧∩ ↓c.

Let f : Kn → K be a compatible function. By (B) and 3.4, f is a local
polynomial function. For every α ∈ P we define a unary function fα : K → K by
the rule

fα(y) = f(x1, . . . , xn), where xi =





0 if i ∈ α0;
1 if i ∈ α1;
y otherwise.

It is clear that the functions fα are compatible. Therefore by (F) and (I) we have
constants bα, cα such that

K∨∩ ↑fα(K∨) = K∨∩ ↑bα;(*)

K∧∩ ↓fα(K∧) = K∧∩ ↓cα.

¿From the proof of Lemma 3.6 we see that

x ∨ fα(x) = min{y ∈ K∨∩ ↑fα(K∨) | x ≤ y} = bα ∨ x;

z ∧ fα(z) = max{y ∈ K∧∩ ↓fα(K∧) | z ≥ y} = cα ∧ z

for every x ∈ K∨, z ∈ K∧.

3.7 Lemma. If α ≤ β then K∨∩ ↑fα(K∨) ⊇ K∨∩ ↑fβ(K∨).

Proof. It suffices to deal with the case when (β0 ∪ β1) \ (α0 ∪ α1) is a one-element
set, say, {j}. Let x ∈ K∨∩ ↑ fβ(K∨). Then x ≥ fβ(y) for some y ∈ K∨ and by
3.1 we have x ≥ fβ(y)∨ x ≥ fβ(x). Let us define a unary compatible function g as
follows:

g(y) = f(x1, . . . , xn), where xi =





0 if i ∈ α0;
1 if i ∈ α1;
y if i = j;
x otherwise.

If j ∈ β0 then g(0) = fβ(x). If j ∈ β1 then g(1) = fβ(x). Hence, either x ≥ g(0) or
x ≥ g(1). By 3.1(5) then x ≥ g(x) = fα(x), hence x ∈ K∨∩ ↑fα(K∨). ¤
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3.8 Lemma. The constants bα, cα in (*) can be chosen in such a way that
(i) if α0 ∪ α1 = n then both bα and cα are equal to the value of the constant

function fα;
(ii) if α ≤ β then bα ≤ bβ ≤ cβ ≤ cα.

Proof. If α0 ∪ α1 = n then fα is a constant function equal to some k ∈ K. We set
bα = cα = k. Clearly, (*) is satisfied.

Let bα, cα be arbitrary elements satisfying (*). We set b′α =
∧

β≥α bβ , c′α =∨
β≥α cβ . Now the constants b′α, c′α fulfil (ii) (notice that for β0 ∪ β1 = n we have

bβ = cβ) and it remains to show that (*) is valid when we replace bα, cα by b′α, c′α.
For any x, y ∈ K we have K∨∩ ↑(x∧y) = (K∨∩ ↑x)∨(K∨∩ ↑y), i.e. K∨ ↑(x∧y)

is the least filter containing both K∨∩ ↑ x and K∨∩ ↑ y. By induction we obtain
that, for any α ∈ P ,

K∨∩ ↑b′α =
∨

α≤β

K∨∩ ↑bβ =
∨

α≤β

K∨∩ ↑fβ(K∨) = K∨∩ ↑fα(K∨)

using Lemma 3.7. Hence, the elements b′α fulfil (*). The proof for c′α is analo-
gous. ¤
3.9 Theorem. Let K be a Kleene algebra. The following conditions are equivalent:

(1) K is affine complete;
(2) K∨ is affine complete in K;
(3) K∧ is affine complete in K;
(4) K∨ does not contain proper Boolean intervals and for every proper almost

principal filter F in K∨ there exists b ∈ K such that F = K∨∩ ↑b.
(5) K∧ does not contain proper Boolean intervals and for every proper almost

principal ideal I in K∧ there exists c ∈ K such that F = K∧∩ ↓c.

Proof. The existence of the dual automorphism ′ for the lattice K yields that the
conditions (2) and (3) and similarly the conditions (4) and (5) are equivalent. The
implications (1) =⇒ (2) =⇒ (4) follow from Lemmas 2.1 and 2.3. So we have to
prove only the implication (4) =⇒ (1). Let K be a Kleene algebra satisfying (4)
and f : Kn −→ K a compatible function. Hence, we have the constants bα, cα that
satisfy (*) and 3.8(i),(ii). For α ∈ P we define polynomials Cα, Dα by the rule

Cα =
∨

j∈α0

xj ∨
∨

j∈α1

x′j ; Dα =
∨

j∈n\α1

xj ∨
∨

j∈n\α0

x′j .

Let us set
p(x1, . . . , xn) =

∧

α∈P

(cα ∨ Cα) ∧
∧

α∈P

(bα ∨Dα).

To prove that p represents f , it suffices to show that p(x1, . . . , xn) = f(x1, . . . , xn)
for x1, . . . , xn ∈ {0, s, 1}, where s is an arbitrary element of K∨. Without loss of
generality, x1 = · · · = xk = 0, xk+1 = · · · = xl = s and xl+1 = · · · = xn = 1. Let us
denote β = (k, n\ l), γ = (k, n\k). If k = l then p(x1, . . . , xn) = cβ = f(x1, . . . , xn)
by 3.8. Suppose that k < l. We claim that

p(x1, . . . , xn) = cβ ∧ (bβ ∨ s) ∧ (bγ ∨ s′).
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Clearly, p(x1, . . . , xn) ≤ cβ ∧ (bβ ∨ s) ∧ (bγ ∨ s′), because Cβ = 0, Dβ = s and
Dγ = s′. The other inequality follows from the facts that

cα ∨ Cα ≥





Cα = 1 if α0 * l or α1 * n \ k;
cβ if α ≤ β;
cα ∨ s′ ≥ cγ ∨ s′ = bγ ∨ s′ if γ ≥ α � β;
cα ∨ s ≥ cα∪β ∨ s ≥ bα∪β ∨ s ≥ bβ ∨ s otherwise

and

bα ∨Dα ≥





Dα = 1 if β � α;
bα ∨ s′ = bγ ∨ s′ if β ≤ α = γ;
bα ∨ s ≥ bβ ∨ s if β ≤ α 6= γ.

We wish to show that f(x1, . . . , xn) = fβ(s) = p(x1, . . . , xn). We have cβ ≥ cγ =
fβ(1) and also cβ ≥ fβ(s′) ∧ s′, thus, by 3.1, cβ ≥ (fβ(1) ∨ fβ(s′)) ∧ (fβ(1) ∨ s′) ≥
fβ(s). Further, bβ ∨ s = fβ(s) ∨ s ≥ fβ(s) and bγ ∨ s′ = fβ(1) ∨ s′ ≥ fβ(s) by 3.1.
Hence, fβ(s) ≤ p(x1, . . . , xn).

By the distributivity (using inequalities bβ ≤ bγ = cγ ≤ cβ) we can write

p(x1, . . . , xn) = bβ ∨ (bγ ∧ s) ∨ (cβ ∧ s′).

Using the equalities bβ ∨ s = fβ(s) ∨ s, cβ ∧ s′ = fβ(s′) ∧ s′ and the inequalities
from 3.1 we have bβ ≤ (fβ(s) ∨ s) ∧ fβ(1) = (fβ(s) ∧ fβ(1)) ∨ (s ∧ fβ(1)) ≤ fβ(s),
bγ ∧ s = fβ(1) ∧ s ≤ fβ(s) and cβ ∧ s′ ≤ fβ(s). Hence, p(x1, . . . , xn) ≤ fβ(s). ¤
3.10 Examples.
(1) Let K1 = {(−∞,−∞)}∪ ((R×R) \ {(0, 0)})∪{(∞,∞)} be the Kleene algebra
with the complementation defined by (x, y)′ = (−x,−y). Then K∨

1 = ({(x, y) ∈
R × R | x ≥ 0, y ≥ 0} \ {(0, 0)}) ∪ {(∞,∞)} is obviously an affine complete
distributive lattice by 2.4(3). Hence K∨

1 is affine complete in the lattice K1 and by
3.9, the Kleene algebra K1 is affine complete.

Note that for the same reason, the Kleene algebra K∧
1 ⊕ K∨

1 , where ⊕ means
the linear sum, is affine complete. In general, for every affine complete distributive
lattice D, the Kleene algebra D ⊕ Dd is affine complete where Dd is a dual of D
and the complementation operation is the antiisomorphism between D and Dd.
(2) Let K2 = K1 \ {(0, y) | y ∈ R} be a subalgebra of K1. Then K∨

2 = {(x, y) ∈
R × R | x > 0, y ≥ 0} ∪ {(∞,∞)} is not, according to 2.4(3), an affine complete
lattice because F = {(x, y) ∈ R ×R | x > 0, y ≥ 1} ∪ {(∞,∞)} is a proper almost
principal filter in K∨

2 without a smallest element. One can verify that the unary
function g : K∨

2 → K∨
2 given by g(x) = min{y ∈ F | x ≤ y} is a compatible function

of the lattice K∨
2 but cannot be represented by a polynomial function of K∨

2 (see
a similar verification in [12; 2.2]). However, note that there is an element b in K2,
for example, b = (−1, 1) such that F = K∨

2 ∩ ↑ b. It can easily be seen that the
condition (4) of 3.9 is satisfied, hence again, K∨

2 is affine complete in the lattice K2

and the Kleene algebra K2 is affine complete.
(3) Let K3 = K2 \ {(x, y) ∈ R×R | x · y < 0} be a Kleene subalgebra of K2. Then
K∨

3 = {(x, y) ∈ R × R | x > 0, y ≥ 0} ∪ {(∞,∞)} = K∨
2 is again not an affine

complete lattice. But note that for the almost principal filter without a smallest
element F defined in (2) there is now no element b ∈ K3 such that F = K∨

3 ∩ ↑ b.
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Hence K∨
3 is not affine complete in the lattice K3 and the Kleene algebra K3 is not

affine complete. It can be verified that the unary function f : K3 → K3 given by
f(x) = min{y ∈ F | x ∨ x′ ≤ y} is a compatible function of the Kleene algebra K3

but cannot be represented by a polynomial of K3.
However, by 3.4 it is clear that K3 is a locally affine complete Kleene algebra.

(4) Every finite Kleene algebra which is not a Boolean algebra is not affine com-
plete. ¤
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[13] Ploščica, M., Affine completions of distributive lattices, to appear in Order.

Department of Mathematics, M. Bel University, Zvolenská cesta 6, 974 01 Banská
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