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Abstract. An algebra is called affine complete if all its compatible (i.e. congruence-
preserving) functions are polynomial functions. In this paper we characterize affine
complete members in the variety of Kleene algebras. We also characterize local
polynomial functions of Kleene algebras and use this result to describe locally affine
complete Kleene algebras.

1. Introduction

Let A be a universal algebra. A function f : An → A is called compatible if, for
any congruence θ of A, (ai, bi) ∈ θ, i = 1, . . . , n, implies that

(f(a1, . . . , an), f(b1, . . . , bn)) ∈ θ.

A polynomial function (or simply a polynomial) of A is any function that can be
obtained by composition of the basic operations of A, the projections and the con-
stant functions. A local polynomial of A is any function which can be interpolated
by polynomials on all finite subsets of its domain.

Obviously, (local) polynomials are compatible functions. An algebra is called
(locally) affine complete if the converse holds: every compatible function is a (local)
polynomial. (We note that the concept ‘locally affine complete’ has sometimes
another meaning in the literature - see e.g. [10].)

Originally, the problem of characterizing algebras which are affine complete was
formulated in [6]. Since every algebra is a reduct of an affine complete algebra (e.g.
of that which contains all its compatible functions among the basic operations), in
[3] the problem was reformulated as follows: characterize affine complete algebras
in your favourite variety.

For various varieties of algebras affine completeness has already been investigated
(see introductions in [3] or [8]). The papers [5], [7]-[9] and [11]-[12] contain some
ideas that are close to our considerations. In [7] affine completeness of the class
of algebras containing Kleene algebras was studied. In particular, it was shown
there that a finite Kleene algebra is affine complete if and only if it is a Boolean
algebra. The aim of this paper is to characterize affine completeness and local affine
completeness for Kleene algebras in general.
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For our purpose, the following generalization of affine completeness will prove
useful. Let A be a subalgebra of an algebra B. We say that A is affine complete
in B if every compatible function on A can be interpolated by a polynomial of B.
(That is, we can use all elements of B as constants.) Clearly A is affine complete
iff it is affine complete in itself.

In fact the study of affine completeness is motivated by far more general problem
of characterizing (local) polynomials for given classes of algebras. For example,
local polynomials of bounded distributive lattices are polynomials and one can
characterize them as order preserving compatible functions [5]. One can prove
that local polynomials of arbitrary distributive lattices are exactly order preserving
compatible functions [4].

Our approach provides similar characterization of local polynomials for Kleene
algebras. Of course, the order relation has to be replaced by another appropriate
binary relation. It is also worth mentioning that our final results are constructive:
we are able to write down explicitly the interpolating polynomials for the given
compatible function.

Now we recall the definition and some terminology for Kleene algebras. For more
information see e.g. [1] or [2]. A Kleene algebra is a bounded distributive lattice
with an additional unary operation (complementation) denoted by ′ and satisfying
the identities:

(x ∨ y)′ = x′ ∧ y′ , (x ∧ x′) ∨ (y ∨ y′) = y ∨ y′ , 0′ = 1 , x′′ = x

and their duals. Clearly every Boolean algebra is a Kleene algebra. A typical
Kleene algebra which is not Boolean is 3 = {0, a, 1} with 0 < a < 1 and a′ = a. It
is known that the variety of Kleene algebras is generated by 3. Moreover, 3 and
its subalgebra 2 = {0, 1} are the only subdirectly irreducible Kleene algebras.

For every Kleene algebra K we denote K∨ = {x ∨ x′|x ∈ K}. The subset K∧

is defined dually. It is easy to check that K∨ and K∧ are a filter and an ideal of
the distributive lattice K, respectively. Obviously the complementation operation
induces an antiisomorphism between them. Note that the union K∨∪K∧ is always
a subalgebra of K and every congruence of the lattice K∨ extends in a natural way
to a congruence of the Kleene algebra K∨ ∪ K∧. Now, it is known [2] that the
variety of Kleene algebras has the congruence extension property. Hence we have
the following important lemma.

1.1 Lemma. For every Kleene algebra K, any congruence of the lattice K∨ is a
restriction of some congruence of the Kleene algebra K.

We write x v y if x ∧ s ≤ y ≤ x ∨ s′ for some s ∈ K∨ and call the binary
relation v the uncertainity order for K. The main results of the present paper are
the following.

(1) The function on a Kleene algebra K is a local polynomial function if and
only if it preserves the congruences of K and the uncertainity order.

(2) A Kleene algebra K is affine complete if and only if the lattice K∨ is affine
complete in the lattice K.

(3) A Kleene algebra K is locally affine complete if and only if the lattice K∨

is locally affine complete.
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2. Necessary conditions

In [8] it was proved that a Stone algebra S is affine complete if and only if the
filter D(S) of its ‘dense’ elements is (as a lattice) affine complete in S. Our result
for Kleene algebras looks very similar. The first steps toward it were done in [7]
where it was proved that a Kleene algebra K with a finite filter K∨ is (locally)
affine complete if and only if it is a Boolean algebra.

First we look at a canonical form for n-ary polynomials of Kleene algebras. Let
n = {1, . . . , n} and consider a pair of subsets α1, α2 ⊆ n. To every such pair
α = (α1, α2) we assign the n-ary Kleene term

Cα(x1, . . . , xn) =
( ∨

i∈α1

xi

) ∨ ( ∨

i∈α2

x′i
)
.

It follows easily from the axioms of Kleene algebras that every Kleene polynomial
can be represented as a meet of polynomials kα ∨ Cα where kα are constants from
K. We refer to the polynomials kα ∨ Cα as to elementary polynomials of a Kleene
algebra.

2.1 Lemma. Let K be a Kleene algebra. If K is affine complete, then K∨ and
K∧ are (as lattices) affine complete in K.

Proof. Let g : (K∨)n → K∨ be a compatible function of the lattice K∨. Define a
function f : Kn → K by

f(x1, . . . , xn) = g(x1 ∨ x′1, . . . , xn ∨ x′n) for all x1, . . . , xn ∈ K.

It follows from Lemma 1.1 that f is a compatible function of the algebra K and
its restriction to (K∨)n is g. Since K is affine complete, f is a polynomial function
of K and hence f can be written as the meet of some elementary polynomials
kα ∨Cα. We will show that omitting in this polynomial all members of the form x′i
we get a lattice polynomial of K which coincides with the function g.

Obviously we can omit all x′i which appear in elementary polynomials
kα ∨ Cα(x1, . . . , xn) with α1 6= ∅. This follows from the fact that x ≤ y for all
x ∈ K∧, y ∈ K∨. Now let b be the meet of all coefficients kα for which α1 = ∅.
It is easy to see that b = f(1, . . . , 1) ∈ K∨ implying kα ∈ K∨ whenever α1 = ∅.
Thus the assumption that in such elementary polynomials kα ∨ Cα(x1, . . . , xn) all
variables take their values in K∨ implies kα ∨ Cα(x1, . . . , xn) = kα ∈ K∨. Hence
the members of the form x′i can be omitted again.

We have showed that if K is affine complete then K∨ is (as a lattice) affine
complete in K. For K∧ the statement can be proved dually. ¤

The following lemma can be proved similarly as the preceding one. It is a special
case of [7, Theorem 1].

2.2 Lemma. If K is a locally affine complete Kleene algebra then the lattices K∨

and K∧ are locally affine complete.

As we see from Lemma 2.1, to get a description of affine complete Kleene al-
gebras, we need to describe situations in which the lattices K∨ and K∧ are affine
complete in the lattice K. For this we use some concepts and technique developed
in [11] and [8].
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A filter F of a distributive lattice L is called almost principal if for every x ∈ L
the filter F∩ ↑ x = {y ∈ F | y ≥ x} has a smallest element. An almost principal
ideal of L is defined dually. A filter or an ideal of L is said to be proper if it is not
equal to L. An interval of L is proper if it contains at least two elements.

2.3 Lemma. Let D be a sublattice of a distributive lattice L. Suppose that D is
affine complete in L. Then

(B) D does not contain a proper Boolean interval;
(F) for every proper almost principal filter F in D there exists b ∈ L such that

F = D∩ ↑b;
(I) for every proper almost principal ideal I in D there exists c ∈ L such that

I = D∩ ↓c.

Proof. If D contains a proper Boolean interval [a, b], we define a function f : D →
[a, b] by f(x) = ((x∨a)∧b)′ where ′ denotes the complementation operation in [a, b].
This function is compatible but not isotone (f(b) = a < b = f(a)) and therefore
cannot be represented by a lattice polynomial of L.

We have proved (B). To prove (F) (the proof of (I) is similar), let F be a proper
almost principal filter in D. We define a function g : D → D by g(x) = min(F∩ ↑x).
We see that F is the set of all fixed points of g. It is not difficult to show that g is
compatible (see [11, proof of 2.2]). By our assumption, g can be interpolated by a
polynomial of L. Without loss of generality, g(x) = x∨ b for some b ∈ L. We claim
that F = D∩ ↑ b. If x ∈ F then x = g(x) = x ∨ b, whence x ≥ b, i.e. x ∈ D∩ ↑ b.
Conversely, if x ∈ D∩ ↑b, then g(x) = x ∨ b = x ∈ F . The proof is complete. ¤

For local affine completeness we have the folowing result.

2.4 Corollary ([4; p. 102]). A distributive lattice is locally affine complete if and
only if it does not contain a proper Boolean interval. ¤

3. On compatible functions

In what follows we always assume that the Kleene algebra K is embedded in 3I ,
a power of the Kleene algebra 3 = {0, a, 1}. We write the elements of K in the
form x = (xi)i∈I .

3.1 Lemma. Let f : Kn → K be compatible, xj , yj ∈ K, j = 1, . . . , n and i ∈ I.
Then x1i = y1i, . . . , xni = yni implies f(x1, . . . , xn)i = f(y1, . . . , yn)i.

Proof. Consider the compatibility relative to kernel congruence of the i-th projec-
tion. ¤

This means that every compatible function f determines the coordinate functions
fi such that fi(x1i, . . . , xni) = f(x1, . . . , xn)i for all x1, . . . , xn ∈ K. Obviously, the
family (fi)i∈I completely determines f , so we may identify f with this family.

For any s ∈ K∨ we define the subalgebra Ks of K:

Ks = {x ∈ K|x ∨ x′ ≥ s} .

3.2 Lemma. Let s ∈ K∨. If two n-ary compatible functions of K coincide on
{0, s, 1}n then they coincide on (Ks)n.

Proof. Let f and g coincide on {0, s, 1}n. We prove that

f(x1, . . . , xn)i = g(x1, . . . , xn)i
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for every x1, . . . , xn ∈ Ks and i ∈ I.
First we define for every xj the element yj ∈ {0, s, 1} having the same i-

component as xj :

yj =





0 if xji = 0;
1 if xji = 1;
s if xji = a .

Now by Lemma 3.1,

f(x1, . . . , xn)i = fi(x1i, . . . , xni) = fi(y1i, . . . , yni) = f(y1, . . . , yn)i ,

g(x1, . . . , xn)i = gi(x1i, . . . , xni) = gi(y1i, . . . , yni) = g(y1, . . . , yn)i .

¤
Now we define binary relations on K which turn out to be of great importance.

For any s ∈ K we put

x vs y ⇐⇒ x ∧ s ≤ y ∧ s and x ∨ s′ ≥ y ∨ s′

or equivalently
x vs y ⇐⇒ x ∧ s ≤ y ≤ x ∨ s′ .

3.3 Definition. The union of all relations vs where s ∈ K∨ is denoted by v and
called the uncertainity order of the Kleene algebra K.

Note that in case K = 3 the uncertainity order is the following subset of 3× 3:

{(0, 0), (a, a), (1, 1), (0, a), (1, a)}.

3.4 Lemma. The uncertainity order on K is inherited from the uncertainity order
on 3, i.e. x v y iff xi v yi for every i ∈ I.

Proof. Let x v y. Then x ∧ s ≤ y ≤ x ∨ s′ for some s ∈ K∨. For every i ∈ I we
have xi ∧ si ≤ yi ≤ xi ∨ s′i and si ∈ 3∨, hence xi v yi.

Conversely, suppose that (xi, yi) ∈ {(0, 0), (a, a), (1, 1), (0, a), (1, a)} for every
i ∈ I. Let us set s = (x∨ x′)∧ (y ∨ y′). Clearly s ∈ K∨ and it is easy to check that
xi ∧ si ≤ yi ≤ xi ∨ s′i for every i ∈ I. ¤

It is easy to check that all relations vs are reflexive and transitive. Further, vs

is a subset of vt whenever t ≤ s. Hence, v is a directed union of the relations
vs (s ∈ K∨). Since all the relations vs are subalgebras of K2, the same is true
for v. This implies that every local polynomial function of K preserves v and all
relations vs , s ∈ K.

3.5 Lemma. The relations v and vs coincide on the set Ks.

Proof. Obviously, vs is contained in v. Suppose now that x vs for x, y ∈ Ks. We
have to check that xi ∧ si ≤ yi ≤ xi ∨ s′i for every i ∈ I. This is clear if xi = yi.
In the remaining cases (xi, yi) = (0, a) and (xi, yi) = (1, a) we have si = s′i = a
because a = yi ∨ y′i ≥ a by our assumption. ¤

In the next section we shall see that these properties together with compatibility
characterize local polynomials of Kleene algebras.
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3.6 Lemma. If b, c, s ∈ K and b vs c then there exists a unary polynomial p of K
such that p(1) = b and p(s) = c.

Proof. A suitable polynomial is p(x) = (x ∨ c) ∧ (c ∨ b) ∧ (b ∨ x′). Indeed,

p(1) = (1 ∨ c) ∧ (c ∨ b) ∧ (b ∨ 1′) = 1 ∧ (c ∨ b) ∧ (b ∨ 0) = (c ∨ b) ∧ b = b

and

p(s) = (s ∨ c) ∧ (c ∨ b) ∧ (b ∨ s′) = (s ∨ c) ∧ (c ∨ b) = c ∨ (s ∧ b) = c .

¤
3.7 Lemma. If all unary compatible functions of K preserve the relation vs for
some s ∈ K then so do all compatible functions.

Proof. Let xj , yj ∈ K , xj vs yj , j = 1, . . . , n, and let f be an n-ary compatible
function on K such that f(x1 . . . , xn) 6vs f(y1, . . . , yn). Using Lemma 3.6 take
unary polynomials pj such that pj(1) = xj , pj(s) = yj and consider the unary
compatible function g(x) = f(p1(x), . . . , pn(x)). Obviously 1 vs s but g(1) 6vs

g(s). ¤
The next lemma will prove useful in a characterization of locally affine complete

algebras (Theorem 4.3).

3.8 Lemma. If all compatible functions on the lattice K∨ are order preserving then
all compatible functions on Kleene algebra K preserve all relations vs, s ∈ K∨.

Proof. Suppose there is an s ∈ K∨ and a compatible function f on K which does
not preserve vs. In view of Corollary 3.5 we may assume that f is unary. We show
that then there is a compatible function on the lattice K∨ which does not preserve
the order relation.

Let x, y ∈ K ,x vs y but f(x) 6vs f(y). Obviously then there exists i ∈ I such
that xi vsi yi but fi(xi) 6vsi fi(yi). This is possible only in case si = a = yi and
fi(xi) 6= fi(yi) 6= a. Without loss of generality, fi(yi) = 1, otherwise consider the
function g(x) = f(x)′.

Assume first fi(1) ≤ a. The function g(z) = f(z) ∨ s is a compatible function
of the Kleene algebra K and maps K∨ into K∨. By Lemma 1.1 the restriction of
g to K∨ is a compatible function of the lattice K∨. However, g does not preserve
the order relation of K∨ because gi(1) = a and gi(a) = 1, and hence g(y) � g(1).

Now let fi(1) = 1. Then we have fi(0) ≤ a and considering the function g(z) =
f(z′) ∨ s we obtain a similar contradiction. ¤

Now we return to canonical forms of Kleene polynomials. We shall construct
such polynomials in the form

(1) p(x1, . . . , xn) =
∧

α∈P

(kα ∨ Cα(x1, . . . , xn))

where kα are constants from K and P stands for the set of ordered pairs α =
(α1, α2) of subsets of n such that α1 ∩ α2 = ∅ or α1 ∪ α2 = n. Further, we denote
P0 = {α ∈ P | α1 ∩ α2 = ∅}, Pn = {α ∈ P | α1 ∪ α2 = n}. We write α ≤ beta for
elements of P if α1 ⊆ β1 and α2 ⊆ β2. We keep this denotation throughout the
paper.
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If f : Kn −→ K is any function and α ∈ P0, we denote by fα : K −→ K the
function defined by the rule

fα(y) = f(x1, . . . , xn), where xj =





0 if j ∈ α1;
1 if j ∈ α2;
y otherwise.

3.9 Lemma. Suppose that a compatible function f : Kn −→ K preserves the
relation v. Then, for every s ∈ K∨, β, γ ∈ P0, γ ≤ β, the following holds:

(1) fβ(s) ∧ s′ ≤ fγ(s) ≤ fβ(s) ∨ s;
(2) fβ(s′) ∧ s′ ≤ fγ(s′) ≤ fβ(s′) ∨ s.

Proof. We prove (1). If si = 1 then trivially

((*)) (fβ(s) ∧ s′)i ≤ fγ(s)i ≤ (fβ(s) ∨ s)i.

So, let i ∈ I be such that si = a. Then also s′i = a. Now the case fγ(s)i = a is
trivial, let us assume that fγ(s)i 6= a. Recall that fβ(s) = f(x1, . . . , xn), where
xk = 0 for k ∈ β1, xk = 1 for k ∈ β2 and xk = s otherwise. Let us define
z1, . . . , zn ∈ K as follows: zk = 0 for k ∈ γ1, zk = 1 for k ∈ γ2, zk = s′ for
k ∈ β1 \γ1 and zk = s otherwise. Since 0 v s′ and 1 v s, we have xk v zk for every
k, which implies that fβ(s) v f(z1, . . . , zn). By 3.1, f(z1, . . . , zn)i = fγ(s)i, hence
fβ(s)i v fγ(s)i. Since fγ(s)i 6= a, this is only possible if fβ(s)i = fγ(s)i and hence
(*) holds.

The proof of (2) is similar. ¤
3.10 Theorem. Let f : Kn → K be a compatible function on a Kleene algebra
K. Let s ∈ K∨ be such that f preserves vs. Suppose that the constants kα (α ∈ P )
satisfy the following conditions:

(i) if α ∈ P0 ∩ Pn then kα = fα;
(ii) if α, γ ∈ P , γ1 ∩ γ2 = α1 ∩ γ2 = γ1 ∩ α2 = ∅ then fβ(s) ≤ kα ∨ s for some

β ∈ P0 with γ ≤ β;
(iii) if α ∈ P0 then kδ ≤ fα(s) ∨ s, where δ = (n \ α2, n \ α1);
(iv) if α, γ ∈ P0, α ≤ γ, then kγ ∧ s′ ≤ fγ(s) ≤ kα.

Then f coincides with the polynomial
∧

α∈P (kα ∨ Cα) on the set {0, s, 1}n.

Proof. Let x = (x1, . . . , xn) ∈ {0, s, 1}n. Without loss of generality, x1 = · · · =
xk = 0, xk+1 = · · · = xl = s, xl+1 = · · · = xn = 1.

First we prove that f(x) ≤ kα ∨ Cα for every α ∈ P . If α1 * l or α2 * n \ k
then Cα = 1 and the statement is trivial. Let us assume α1 ⊆ l and α2 ⊆ n \ k.
We distinguish two cases.

1. Let α1 ∩ α2 = ∅. We set γ1 = α1 ∪ k, γ2 = α2 ∪ (n \ l). Then, by (ii),
fβ(s) ≤ kα ∨ s for some β with β1 ⊇ γ1, β2 ⊇ γ2. By 3.8 then also f(x) ≤ kα ∨ s.
Now, if α1 * k or α2 * n \ l then Cα = s and therefore f(x) ≤ kα ∨ Cα. If α1 ⊆ k
and α2 ⊆ n \ l then f(x) = fγ(s) ≤ kα by (iv).

2. Let α1 ∪ α2 = n. Necessarily k ⊆ α1, n \ l ⊆ α2.We set γ = (α1 \ α2, α2 \ α1)
and repeat the argument from the previous case. (If k = l, we use (i), otherwise
Cα = s.)

Now we prove the inverse inequality. We have to show that f(x)i ≥
∧

α∈P (kα ∨
Cα)i for every i ∈ I. We discuss two cases.
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1. Suppose that si = 1. We set γ = (k, n \ k). Then f(x)i = fγ(s)i = (kγ)i =
(kγ ∨ Cγ)i, because either Cγ = 0 (if k = l) or Cγ = s′ (if k < l).

2. Suppose that si = a. Then also s′i = a. Let γ = (k, n \ l), δ = (l, n \ k). We
claim that f(x)i ≥ (kγ ∨ Cγ)i or f(x)i ≥ (kδ ∨ Cδ)i. Clearly, Cγ = 0 and Cδ ∈
{0, s ∨ s′}, hence (Cδ)i ≤ a. If f(x)i = 0 then, by (iv), (kγ)i ∧ a ≤ fγ(s)i = f(x)i,
which implies that (kγ)i = 0 and therefore f(x)i ≥ (kγ ∨ Cγ)i. If f(x)i = a then,
by (iii), kδ ≤ fγ(s) ∨ s = f(x) ∨ s, hence (kδ)i ≤ f(x)i ∨ a = a, which implies that
f(x)i ≥ (kδ ∨ Cδ)i. ¤

4. Local polynomials of Kleene algebras

In this section we describe local polynomials of Kleene algebras, which leads to a
characterization of local affine completeness.

4.1 Theorem. Let f be an n-ary compatible function on a Kleene algebra K.Then
the following are equivalent:

(1) f is a local polynomial function of K;
(2) f preserves the uncertainity order of K ;
(3) f can be interpolated by a polynomial on Ks for every s ∈ K∨.

Proof. The implication (1) =⇒ (2) is obvious and (3) =⇒ (1) follows from the fact
every finite subset of K is contained in some Ks , s ∈ K∨. Im remains to prove
(2) =⇒ (3).

By 3.2 it suffices to interpolate f on the set {0, s, 1}. Keeping in mind the general
form from Lemma 2.1 we define p(x1, . . . , xn) as a meet of elementary polynomials
kα ∨ Cα where the coefficients kα are calculated by the following rule:

(1) if α1 ∪ α2 = n then kα = f(x1, . . . , xn) where

xj =





0 if j ∈ α1 \ α2,

1 if j ∈ α2 \ α1,

s otherwise;

(2) if α1 ∪ α2 6= n then kα is the join of all elements f(x1, . . . , xn) where
xj ∈ {0, s, 1} and

xj =
{

0 if j ∈ α1,

1 if j ∈ α2.

Obviously, it suffices to prove that the elements kα fulfil the conditions from 3.10.
Of them, (i) is obvious. Now, let α, γ ∈ P satisfy the assumptions of (ii). If
α1 ∪ α2 = n, we set β = (α1 \ α2, α2 \ α1) and clearly kα = fβ(s). If α1 ∪ α2 6= n,
we set β = (α1 ∪ γ1, α2 ∪ γ2) and again kα ≥ fβ(s). To show (iii), it is easy to
see that δ1 ∪ δ2 = n and kδ = fα(s) is the definition of kδ. In the condition (iv),
the inequality fγ(s) ≤ kα is clear by the definition of kα. To prove the inequality
kγ ∧ s′ ≤ fγ(s) we need to show that fβ(s) ∧ s′ ≤ fγ(s) whenever β ∈ P is such
that γ1 ⊆ β1 and γ2 ⊆ β2. This was proved in 3.9. ¤
4.2 Theorem. Let K be a Kleene algebra. The following conditions are equivalent:

(1) K is locally affine complete;
(2) K∨ is a locally affine complete lattice;
(3) K∨ does not contain a proper Boolean interval.
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Proof. The conditions (2) and (3) are equivalent by 2.4. The implication (1) =⇒ (2)
was proved in 2.2. It remains to show (2) =⇒ (1). (2) implies that compatible
function on the lattice K∨ is order preserving. By 3.6, every compatible function
on the Kleene algebra K preserves v. By 4.1, every compatible function on K is a
local polynomial. ¤

4.3 Theorem. Let K be a Kleene algebra such that K∨ has a smallest element.
The following are equivalent:

(1) K is affine complete;
(2) K∨ is an affine complete lattice;
(3) K∨ does not contain a proper Boolean interval.

Proof. Since K∨ is now a bounded lattice, (2) and (3) are equivalent by ?.?. Since
every affine complete algebra is locally affine complete, the implication (1) =⇒ (3)
comes from Theorem 4.2. To prove (3) =⇒ (1) observe that by 4.2 the algebra K
is locally affine complete and hence every compatible function can be interpolated
by a polynomial on any Ks. In our case, however, K = Ks where s is the smallest
element of K∨. ¤

5. Affine completeness

In this section we prove the converse to Lemma 2.1. We start with a lemma
which gives a key for using the conditions (F) and (I) relative to K∨ and K∧,
respectively. If Y is a subset of an ordered set X, we denote ↑ Y = {x ∈ X | x ≥
y for some y ∈ Y } (and dually for ↓ Y ).

5.1 Lemma. Let f : K −→ K be a local polynomial function of a Kleene algebra
K. Then K∨∩ ↑f(K∨) is an almost principal filter in K∨ and K∧∩ ↓f(K∧) is an
almost principal ideal in K∧.

Proof. We prove the first statement. Let F = K∨∩ ↑ f(K∨) = {x ∈ K∨ | f(z) ≤
x for some z ∈ K∨}. We claim that, for x ∈ K∨,

x ∨ f(x) = min{y ∈ F | x ≤ y}.

It is clear that x ≤ x ∨ f(x) ∈ F . Conversely, let x ≤ y ∈ F . Then y ≥ f(z) for
some z ∈ K∨. By Corollary 3.8, f(x) ≤ x∨f(z) and hence x∨f(x) ≤ x∨f(z) ≤ y.

To see that F is closed under meets, consider x, y ∈ F , z = x ∧ y, t = min{u ∈
F | z ≤ u}. Clearly, z ≤ t ≤ x, t ≤ y, hence z = t ∈ F .

The other statement can be proved similarly. ¤

5.2 Theorem. Let K be a Kleene algebra. The following conditions are equivalent:

(1) K is affine complete;
(2) K∨ is affine complete in K;
(3) K∧ is affine complete in K;
(4) K∨ does not contain proper Boolean intervals and for every proper almost

principal filter F in K∨ there exists b ∈ K such that F = K∨∩ ↑b.
(5) K∧ does not contain proper Boolean intervals and for every proper almost

principal ideal I in K∧ there exists c ∈ K such that F = K∧∩ ↓c.



10 MIROSLAV HAVIAR, KALLE KAARLI AND MIROSLAV PLOŠČICA

Proof. The existence of the antiautomorphism ′ for the lattice K yields that the
conditions (2) and (3) and similarly the conditions (4) and (5) are equivalent. The
implications (1) =⇒ (2) =⇒ (4) follow from Lemma 2.1 and Theorem 2.3. So we
have to prove only the implication (4) =⇒ (1). Let K be a Kleene algebra satisfying
(4) and f : Kn −→ K a compatible function. Since K∨ has no Boolean intervals,
by Theorem 4.3 f is a local polynomial of K and preserves v.

Let us consider the functions fα defined in Chapter 3. It is clear these functions
are local polynomials and preserve v. Therefore, by Lemma 5.1 the sets K∨∩ ↑
fα(K∨) and K∧∩ ↓ fα(K∧) are an almost principal filter and an almost principal
ideal of K∨ and K∧, respectively. Hence, by (4) and (5) we have constants bα, cα ∈
K such that

K∨∩ ↑fα(K∨) = K∨∩ ↑bα and K∧∩ ↓fα(K∧) = K∧∩ ↓cα .

Let us agree that in case α1 ∪ α2 = n when the function fα is constant, both bα

and cα are equal to this constant value of fα.
It is not difficult to see that fα(s)∨ s = bα ∨ s and fα(s′)∧ s′ = cα ∧ s′ holds for

every s ∈ K∨.
Consider the polynomial

p(x1, . . . , xn) =
∧

α∈P

(kα ∨ Cα)

with constants kα defined as follows:
(1) if α1 ∪ α2 = n then kα = b(α1\α2,α2\α1);
(2) if α1 ∪ α2 6= n then kα is the join of cα and all elements of the form

f(x1, . . . , xn) where xj ∈ {0, 1} and

xj =
{

0 if j ∈ α1;
1 if j ∈ α2.

We are going to prove that these constants satisfy the conditions of 3.10. (for
every s ∈ K∨).

(i) is obvious. Suppose now that α, γ ∈ P satisfy the assumptions of (ii). If
α ∈ Pn, we set β = (α1 \ α2, α2 \ α1), hence kα = bβ and therefore fβ(s) ≤
fβ(s) ∨ s = bβ ∨ s = kα ∨ s. If α /∈ Pn, we can find β ∈ P0 ∩ Pn such that α ≤ β,
γ ≤ β and then fβ(s) ≤ Kα. To show (iii), it is easy to see that δ ∈ Pn and
kδ = bα ≤ fα(s) ∨ s.

Finally, assume that α and γ satisfy the assumptions of (iv). The inequality
(cγ ∧ s′)i ≤ fγ(s)i is clear for i ∈ I with si = 1. If si = a then fγ(s)i = fγ(s′)i and
hence (cγ ∧ s′)i ≤ fγ(s)i. This shows that cγ ∧ s′ ≤ fγ(s). Further, if β ∈ P0 ∩ Pn,
β ≥ γ, then fβ(s) ∧ s′ ≤ fγ(s) by 3.9. Thus, we have proved the inequality
kγ ∧ s′ ≤ fγ(s). It remains to prove that fγ(s) ≤ kα. We set β = (γ1, n \ γ1). If,
for i ∈ I, si = 1 then fγ(s)i = fγ(1)i = (fβ)i ≤ (kα)i. Suppose now that si = a.
The case fγ(s)i = 0 is trivial. If fγ(s)i = 1 then (kα)i ≥ (fβ)i = fγ(1)i = 1
because 1 v s and fγ preserves v. If fγ(s)i = a then also fγ(s′) = a = s′i
and, by 3.9, fα(s′)i ≥ fγ(s′)i ∧ s′i = a. Since cα ≥ fα(s′) ∧ s′, we obtain that
(kα)i ≥ (cα)i ≥ a = fγ(s)i. This completes the proof. ¤



AFFINE COMPLETENESS OF KLEENE ALGEBRAS 11

References

1. Balbes R. and Dwinger Ph., Distributive lattices, Univ. Miss. Press, 1975.
2. Berman J., Distributive lattices with an additional unary operation, Aecquationes Mathe-

maticae 16 (1977), 165–171.
3. Clark D. and Werner H., Affine completeness in semiprimal varieties, Finite Algebra and

Multiple-Valued Logic (Proc. Conf. Szeged, 1979). Colloq. Math. Soc. J. Bolyai 28 (1981),
Amsterdam: North-Holland, 809-823.

4. Dorninger D. and Eigenthaler G., On compatible and order-preserving functions on lattices,
Universal algebra and appl. 9 (1982), Banach Center Publ., Warsaw, 97-104.

5. Grätzer, G., Boolean functions on distributive lattices, Acta Math. Acad. Sci. Hungar. 15
(1964), 195-201.

6. , Universal algebra, Toronto-London-Melbourne: Van Nostrand, 1968.
7. Haviar M., Affine complete algebras abstracting Kleene and Stone algebras, Acta Math. Univ.

Comenianae 2 (1993), 179-190.
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