CANCELLATION AMONG FINITE UNARY ALGEBRAS

MIROSLAV PLOŠČICA and MIRON ZELINA

ABSTRACT. We show that a unary algebra is cancellable among finite unary algebras if and only if it contains a one–element subalgebra.

1. INTRODUCTION

We are interested in the following problem: for which algebras \mathbf{C} the condition $\mathbf{A} \times \mathbf{C} \cong \mathbf{B} \times \mathbf{C}$ implies $\mathbf{A} \cong \mathbf{B}$?

Let us call an algebra \mathbf{C} cancellable in a class \mathcal{K} of algebras if $\mathbf{C} \in \mathcal{K}$ and \mathbf{C} has the following property: for all \mathbf{A} , $\mathbf{B} \in \mathcal{K}$, if $\mathbf{A} \times \mathbf{C} \cong \mathbf{B} \times \mathbf{C}$, then $\mathbf{A} \cong \mathbf{B}$. We call \mathbf{C} cancellable among finite algebras if \mathbf{C} is cancellable in the class of all finite algebras of its similarity type.

A characterization of algebras cancellable among finite algebras has not been known for any nontrivial similarity type (see [4] for a survey). However, there are some characterization results for relational structures (see [1], [3]). In case of algebras, the best known result is the following theorem due to L. Lovász:

Theorem 1. (See [2], [4].) Every finite algebra having a one-element subalgebra is cancellable among finite algebras. \Box

The aim of this paper is to prove the converse of this theorem for unary algebras with an arbitrary number of operations. To make the paper accesible to a wider audience, we explain here the basic concepts for unary algebras.

Let F be a set of unary operational symbols. By a unary algebra $\mathbf{A} = (A, F)$ we mean a set A (called the underlying set) on which unary operations $f^{\mathbf{A}}$ are defined for all $f \in F$. If \mathbf{A} is understood, we usually write f instead of $f^{\mathbf{A}}$. We admit the cases $A = \emptyset$ and $F = \emptyset$.

A congruence on $\mathbf{A} = (A, F)$ is an equivalence relation \sim on the set A satisfying the following compatibility condition for each $f \in F$: if $x \sim y$ then $f(x) \sim f(y)$. For any such congruence we can form the factor algebra $\mathbf{A}/\sim = (A/\sim, F)$, whose underlying set *Asim* is the set of all equivalence classes (blocks) of \sim and the operations are defined in a natural way: f([x]) = [f(x)]. (Here [y] means the block containing y.)

The product of algebras $\mathbf{A} = (A, F)$, $\mathbf{B} = (B, F)$ is the unary algebra $\mathbf{A} \times \mathbf{B} = (A \times B, F)$ whose underlying set is the Cartesian product $A \times B$ and the operations are defined by $f^{\mathbf{A} \times \mathbf{B}}(x, y) = (f^{\mathbf{A}}(x), f^{\mathbf{B}}(y))$.

An isomorphism between **A** and **B** is a bijective mapping $\varphi : A \longrightarrow B$ preserving each $f \in F$, i.e. satisfying $\varphi(f^{\mathbf{A}}(x)) = f^{\mathbf{B}}(\varphi(x))$ for every $x \in A$. If there is an

Typeset by $\mathcal{A}_{\mathcal{M}} \mathcal{S}\text{-}T_{\!E} \! X$

Supported by Grant GA–SAV 362/92

isomorphism between A and B, we say that A and B are isomorphic and write $A \cong B$.

For any set X, $\mathcal{P}(X)$ denotes the set of all subsets of X and |X| means the cardinality of X. For any positive integer t, \underline{t} denotes the set $\{0, \ldots, t-1\}$. For a composition of mappings we adopt the convention that $f \circ g(x) = f(g(x))$.

We assume throughout that $\mathbf{C} = (C, F)$ is a finite unary algebra (i.e. the set C is finite) without any one-element subalgebra. Our aim is to construct two nonisomorphic algebras \mathbf{A} and \mathbf{B} of the same type as \mathbf{C} such that $\mathbf{A} \times \mathbf{C} \cong \mathbf{B} \times \mathbf{C}$.

Let F^* be the set of all mappings $C \longrightarrow C$ that can be obtained by a composition of some finite number of operations from $\{f^{\mathbf{C}} : f \in F\}$ (including the identity mapping ι_C , which is the composition of the empty set of functions).

We say that an element $x \in C$ is f-cyclic (for $f \in F^*$), if $f^k(x) = x$ for some positive integer k. If this condition is not fulfilled, we say that x is f-acyclic. An element x is called cyclic, if it is f-cyclic for every $f \in F^*$. If x is not cyclic, it is called acyclic. It is easy to see that if x is f-cyclic, then so is f(x). Let $\mathfrak{C}(\mathbf{C})$ be the family of all subsets of C which are closed under all $f \in F^*$ and consist of cyclic elements. The family $\mathfrak{C}(\mathbf{C})$ is clearly closed under set-theoretical union and therefore contains the greatest element (with respect to set inclusion). This greatest element will be called the core of \mathbf{C} and denoted by $\operatorname{Core}(\mathbf{C})$. It is clear that any $f \in F^*$ restricted to $\operatorname{Core}(\mathbf{C})$ is a permutation. In fact, $\operatorname{Core}(\mathbf{C})$ is the largest subset of C on which all the operations are permutations. Let us remark that the case $\operatorname{Core}(\mathbf{C}) = \emptyset$ is possible.

Hence, every element of $\operatorname{Core}(\mathbf{C})$ is cyclic. However, there might be cyclic elements that do not belong to $\operatorname{Core}(\mathbf{C})$. Consider the following example. Let $A = \{a, b, c\}$ and define $f, g, h, k : A \longrightarrow A$ by f(a) = c, f(b) = f(c) = a, $g(a) = a, g(b) = g(c) = b, h = f \circ f, k = g \circ f$. It is not difficult to check that the set $\{f, g, h, k, \iota\}$ is composition closed (ι is the identity mapping), the algebra $\mathbf{A} = (A, \{f, g, h, k, \iota\})$ has an empty core and the element $a \in A$ is cyclic. The following assertion provides an alternative definition of $\operatorname{Core}(\mathbf{C})$.

Lemma 1. Core(**C**) = { $x \in C : f(x)$ is cyclic for every $f \in F^*$ }

Proof. Clearly, any $x \in \text{Core}(\mathbf{C})$ satisfies the above condition. Conversely, suppose that $x \notin \text{Core}(\mathbf{C})$. Let $X = \{f(x) : f \in F^*\}$. Then X is closed under all $f \in F^*$. Since F^* contains the identity mapping, we have $x \in X$ and hence $X \nsubseteq \text{Core}(\mathbf{C})$. By the definition of $\text{Core}(\mathbf{C})$, X must contain an acyclic element. \Box

We define an equivalence relation \approx on $\operatorname{Core}(\mathbf{C})$ by the rule $a \approx b$ if and only if b = f(a) for some $f \in F^*$. This is indeed an equivalence relation, since each $f \in F^*$ restricted to $\operatorname{Core}(\mathbf{C})$ is a permutation of a finite rank. Let C_1, \ldots, C_s be the equivalence classes of \approx . (We will call them cyclic components of \mathbf{C} .) Notice that F^* acts transitively on each cyclic component. Set

$$n = 2 \cdot |C_1| \dots |C_s|.$$

If $Core(\mathbf{C})$ is empty then n = 2. Further, let us set

$$E = \{ (X, Y) : X \subseteq Y \subseteq C, |Y \setminus X| = 1 \}.$$

Hence E can be regarded as the set of all oriented edges in the Hasse diagram (covering graph) of $\mathcal{P}(C)$ (the ordered set of all subsets of C). Denote by C^* the

set of all finite sequences of elements from C (including the empty sequence). For any

 $\mathbf{c} = \langle c_1, \ldots, c_t \rangle \in C^*$ we define its path as a sequence $\pi(\mathbf{c}) = \langle p_0, \ldots, p_t \rangle$ of subsets of C, determined by the following rule:

 $p_j = \{ c \in C : c \text{ occurs odd number of times in the sequence } \langle c_1, \dots, c_j \rangle \}.$

It is easy to see that $\pi(\mathbf{c})$ is indeed a path in the Hasse diagram of $\mathcal{P}(C)$. The starting set p_0 equals \emptyset , the set p_t is called the terminal set for \mathbf{c} . The characteristic of \mathbf{c} is the map $\chi_{\mathbf{c}} : E \to \mathbb{Z}$ (the set of all integers) defined as follows. For each $e \in E, e = (A, B)$ set

$$\chi_{\mathbf{c}}(e) = |\{j \in \underline{t} : (A, B) = (p_j, p_{j+1})\}| - |\{j \in \underline{t} : (A, B) = (p_{j+1}, p_j)\}|.$$

Thus $\chi_{\mathbf{c}}(e)$ is the difference between the number of times the path $\pi(\mathbf{c})$ traverses the edge e upwards (from A to B) and the number of times $\pi(\mathbf{c})$ traverses e downwards (from B to A).

For every map $f: C \to C$ we define the associated map $f^*: \mathcal{P}(C) \to \mathcal{P}(C)$ by

 $f^*(X) = \{ a \in C : \text{ the set } X \cap f^{-1}(a) \text{ has an odd number of elements } \}.$

The motivation for this definition lies in the following easy fact: if $\langle p_0, \ldots, p_t \rangle$ is the path of $\mathbf{c} = \langle c_1, \ldots, c_t \rangle$, then $\langle f^*(p_0), \ldots, f^*(p_t) \rangle$ is the path of $f(\mathbf{c}) = \langle f(c_1), \ldots, f(c_t) \rangle$.

In the next assertion we express $\chi_{f(\mathbf{c})}$ by means of $\chi_{\mathbf{c}}$. First notice that $(p_j, p_{j+1}) \in E$ does not imply $(f^*(p_j), f^*(p_{j+1})) \in E$; the case $(f^*(p_{j+1}), f^*(p_j)) \in E$ is possible. That is why we need two kinds of "inverse image of $e \in E$ ". For every $f: C \to C$ and $e \in E$ we set

$$f^{-1}(e)^{+} = \{ (X, Y) \in E : (f^{*}(X), f^{*}(Y)) = e \},\$$

$$f^{-1}(e)^{-} = \{ (X, Y) \in E : (f^{*}(Y), f^{*}(X)) = e \}.$$

Lemma 2. For every $f : C \to C$, $\mathbf{c} = \langle c_1, \ldots, c_t \rangle \in C^*$, $e \in E$, the following equality holds:

$$\chi_{f(\mathbf{c})}(e) = \sum_{x \in f^{-1}(e)^+} \chi_{\mathbf{c}}(x) - \sum_{x \in f^{-1}(e)^-} \chi_{\mathbf{c}}(x).$$

Proof. Clearly,

$$\sum_{x \in f^{-1}(e)^+} \chi_{\mathbf{c}}(x) =$$

$$\sum_{x \in f^{-1}(e)^+} |\{j \in \underline{t} : x = (p_j, p_{j+1})\}| - \sum_{x \in f^{-1}(e)^+} |\{j \in \underline{t} : x = (p_{j+1}, p_j)\}| =$$

$$= |\{j \in \underline{t} : (p_j, p_{j+1}) \in f^{-1}(e)^+\}| - |\{j \in \underline{t} : (p_{j+1}, p_j) \in f^{-1}(e)^+\}| =$$

$$= |\{j \in \underline{t} : (p_j, p_{j+1}) \in E, (f^*(p_j), f^*(p_{j+1})) = e\}| -$$

$$|\{j \in \underline{t} : (p_{j+1}, p_j) \in E, (f^*(p_{j+1}), f^*(p_j)) = e\}|.$$

Similarly,

$$\sum_{x \in f^{-1}(e)^{-}} \chi_{\mathbf{c}}(x) = |\{j \in \underline{t} : (p_{j}, p_{j+1}) \in E, (f^{*}(p_{j+1}), f^{*}(p_{j})) = e\}| - |\{j \in \underline{t} : (p_{j+1}, p_{j}) \in E, (f^{*}(p_{j}), f^{*}(p_{j+1})) = e\}|.$$

Since, for every j, either $(p_j, p_{j+1}) \in E$ or $(p_{j+1}, p_j) \in E$ we obtain that

$$\sum_{x \in f^{-1}(e)^+} \chi_{\mathbf{c}}(x) - \sum_{x \in f^{-1}(e)^-} \chi_{\mathbf{c}}(x) =$$

= $|\{j \in \underline{t} : (f^*(p_j), f^*(p_{j+1})) = e\}| - |\{j \in \underline{t} : (f^*(p_{j+1}), f^*(p_j)) = e\}| =$
= $\chi_{f(\mathbf{c})}(e). \quad \Box$

Let us define an equivalence relation \sim on C^* by $\mathbf{c} \sim \mathbf{d}$ iff $\chi_{\mathbf{c}}(e) \equiv \chi_{\mathbf{d}}(e) \pmod{n}$ for every $e \in E$.

Lemma 3. If $\mathbf{c} \sim \mathbf{d}$, then \mathbf{c} and \mathbf{d} have the same terminal set.

Proof. For any $X \subseteq C$ denote

$$k_{\mathbf{c}}(X) = \sum_{A=X \text{ or } B=X} \chi_{\mathbf{c}}(A, B).$$

Hence, $k_{\mathbf{c}}(X)$ is the number of times the path of \mathbf{c} enters X or leaves X. If $X \neq \emptyset$ and $X \neq p_t$ (the terminal set for \mathbf{c}), the number $k_{\mathbf{c}}(X)$ is even, because whenever $\pi(\mathbf{c})$ enters X, it must leave it. If $p_t = \emptyset$, then also $k_{\mathbf{c}}(\emptyset)$ is even, otherwise $k_{\mathbf{c}}(\emptyset)$ and $k_{\mathbf{c}}(p_t)$ are odd. The same holds for the sequence \mathbf{d} . From $\mathbf{c} \sim \mathbf{d}$ it follows that $k_{\mathbf{c}}(X) \equiv k_{\mathbf{d}}(X) \pmod{n}$. Since n is even, we have $k_{\mathbf{c}}(X) \equiv k_{\mathbf{d}}(X) \pmod{2}$. Hence, either both terminal sets are equal \emptyset or they are both equal to the only nonempty X with $k_{\mathbf{c}}(X)$ odd. \Box

It is easy to see that the terminal set for $\mathbf{c} = \langle c_1, \ldots, c_t \rangle$ has an even cardinality if and only if t is even. From this and Lemma 3 we deduce the following consequence.

Lemma 4. If $\mathbf{c} = \langle c_1, \ldots, c_{2t} \rangle \in C^*$, $\mathbf{d} = \langle d_1, \ldots, d_{2u+1} \rangle \in C^*$, then $\mathbf{c} \sim \mathbf{d}$ does not hold. \Box

For every $f \in F$ and $\mathbf{c} = \langle c_1, \ldots, c_t \rangle \in C^*$ we define $f(\mathbf{c}) = \langle f(c_1), \ldots, f(c_t) \rangle$. By this way we obtain an algebra $\mathbf{C}^* = (C^*, F)$ of the same type as \mathbf{C} .

Lemma 5. The relation \sim is a congruence of \mathbf{C}^* .

Proof. Let $f \in F$, $\mathbf{c}, \mathbf{d} \in C^*$, $\mathbf{c} \sim \mathbf{d}$. Then $\chi_{\mathbf{c}}(e) \equiv \chi_{\mathbf{d}}(e) \pmod{n}$ for every $e \in E$. We need to show that $\chi_{f(\mathbf{c})}(e) \equiv \chi_{f(\mathbf{d})}(e) \pmod{n}$ for every $e \in E$. But this follows directly from Lemma 2. \Box

Denote by A(B) the set of blocks of ~ containing a sequence of even (odd) length. By Lemma 4, the sets A and B are disjoint. It is easy to see that both A and B are closed under all $f \in F$. So we have two algebras $\mathbf{A} = (A, F)$ and $\mathbf{B} = (B, F)$ of the same type as \mathbf{C} . They are subalgebras of \mathbf{C}^*/\sim . **Lemma 6.** Let $\mathbf{c} = \langle c_1, \ldots, c_t \rangle \in C^*$, $\mathbf{d} = \langle d_1, \ldots, d_u \rangle \in C^*$ be such that $\mathbf{c} \sim \mathbf{d}$. Then $\langle c_1, \ldots, c_t, c \rangle \sim \langle d_1, \ldots, d_u, c \rangle$ for every $c \in C$.

Proof. Denote $\overline{\mathbf{c}} = \langle c_1, \ldots, c_t, c \rangle$, $\overline{\mathbf{d}} = \langle d_1, \ldots, d_u, c \rangle$. The path of $\overline{\mathbf{c}}$ is obtained from the path $\langle p_0, \ldots, p_t \rangle$ of \mathbf{c} by adding one trasition from p_t to $p_t \cup \{c\}$ (if $c \notin p_t$) or to $p_t \setminus \{c\}$ (if $c \in p_t$). The same holds for $\overline{\mathbf{d}}$ and \mathbf{d} . Since \mathbf{c} and \mathbf{d} have the same terminal set and $\mathbf{c} \sim \mathbf{d}$, we deduce that $\overline{\mathbf{c}} \sim \overline{\mathbf{d}}$. \Box

By a similar reasoning one can show the following assertion.

Lemma 7. Let $\mathbf{c} = \langle c_1, ..., c_t \rangle \in C^*$. Then $\langle c_1, ..., c_t, \rangle \sim \langle c_1, ..., c_t, c, c \rangle$ for every $c \in C$. \Box

Lemma 8. $\mathbf{A} \times \mathbf{C} \cong \mathbf{B} \times \mathbf{C}$.

Proof. For any sequence **c** let [**c**] denote the block of ~ containing **c**. We define a mapping $\varphi : \mathbf{A} \times \mathbf{C} \longrightarrow \mathbf{B} \times \mathbf{C}$ as follows. If $[\mathbf{c}] \in \mathbf{A}$, $\mathbf{c} = \langle c_1, \ldots, c_t \rangle$ and $c \in C$, then

(*)
$$\varphi([\mathbf{c}], c) = ([< c_1, \dots, c_t, c >], c).$$

This definition is correct by Lemma 6. The mapping φ is bijective because the same formula (*) defines the inverse mapping $\mathbf{B} \times \mathbf{C} \longrightarrow \mathbf{A} \times \mathbf{C}$. (See Lemma 7.) Finally, it is straightforward to show that φ preserves all $f \in F$. \Box

It remains to show that **A** and **B** are not isomorphic. It is easily seen that algebra **A** has a one-element subalgebra $(\{[\emptyset]\}, F)$, where \emptyset is the empty sequence. (Of course, the block $[\emptyset]$ contains nonempty sequences as well.) We will prove that **B** has no singleton subalgebra.

Suppose to the contrary that **B** has a singleton subalgebra $\mathbf{S} = (\{S\}, F)$. Hence S is a block of \sim and for every $\mathbf{c} \in S$, $f \in F$ we have $\mathbf{c} \sim f(\mathbf{c})$. Since the relation \sim is transitive, it follows that $\mathbf{c} \sim f(\mathbf{c})$ holds for every $\mathbf{c} \in S$ and $f \in F^*$. By Lemma 3, all $\mathbf{c} \in S$ have the same terminal set. We denote it by T. Since the sequences in S are of odd lengths, the set T has an odd number of elements. In particular, $T \neq \emptyset$.

Lemma 9. Let $\mathbf{c} \in S$. Then

- (i) if $e = (X, Y) \in E$ is such that Y contains an acyclic element, then $\chi_{\mathbf{c}}(e) \equiv 0 \pmod{n}$;
- (ii) the terminal set T consists of cyclic elements.

Proof. Suppose that $a \in Y$ is a *f*-acyclic element for some $f \in F^*$. Then $a \notin \operatorname{im}(f^k) = f^k(C)$ for a sufficiently large integer *k*. We have $f^k \in F^*$, $\mathbf{c} \sim f^k(\mathbf{c})$, hence $\chi_{\mathbf{c}}(e) \equiv \chi_{f^k(\mathbf{c})}(e) \pmod{n}$. Since the sequence $f^k(\mathbf{c})$ does not contain the element *a*, clearly $\chi_{f(\mathbf{c})}(e) = 0$ and $a \notin T$. \Box

Lemma 10. For every $f \in F^*$ there is $\mathbf{d} \in S$ consisting of f-cyclic elements. The terminal set T is a subset of Core(\mathbf{C}).

Proof. Clearly, there is an integer k such that $\operatorname{im}(f^k)$ is the set of all f-cyclic elements. If we choose $\mathbf{c} \in S$ arbitrarily, then $\mathbf{d} = f^k(\mathbf{c})$ is the desired sequence.

An element $a \in C$ belongs to T if and only if it occurs an odd number of times in **d**. Since f permutes the set of all f-cyclic elements and T is the terminal set of both **d** and $f(\mathbf{d})$, it follows that f permutes T. Hence, T is closed under all $f \in F^*$. By Lemma 9, T consists of cyclic elements. According to the definition of core, we have $T \subseteq \text{Core}(\mathbf{C})$. \Box

Notice that in the case $\text{Core}(\mathbf{C}) = \emptyset$ we already have a contradiction (since $\emptyset \neq T \subseteq \text{Core}(\mathbf{C})$). If the core of **C** is not empty, we must go deeper.

Lemma 11. Let $\mathbf{c} \in S$ and $f \in F^*$. Suppose that $e = (X, Y) \in E$ is such that Y contains f-cyclic elements only. Then $f(e) = (f(X), f(Y)) \in E$ and $\chi_{\mathbf{c}}(e) \equiv \chi_{\mathbf{c}}(f(e)) \pmod{n}$.

Proof. The function f is bijective on the set of all f-cyclic elements, hence $f(e) \in E$ holds. We use Lemma 2 with f(e) now playing the role of e. It is not difficult to see that if $x = (U, V) \in f^{-1}(f(e))^+ \cup f^{-1}(f(e))^-$ then either x = e or V contains an f-acyclic element. If V contains an f-acyclic element then by Lemma 9 $\chi_{\mathbf{c}}(x) \equiv$ 0 (mod n). Since $e \in f^{-1}(f(e))^+$, Lemma 2 implies that $\chi_{f(\mathbf{c})}(f(e)) \equiv \chi_{\mathbf{c}}(e)$ (mod n). Since $\mathbf{c} \sim f(\mathbf{c})$, we obtain the desired statement. \Box

Lemma 12. Let $\mathbf{c} \in S$ and let $e = (X, Y) \in E$ be such that $X \subseteq \operatorname{Core}(\mathbf{C})$ and $Y \nsubseteq \operatorname{Core}(\mathbf{C})$. Then $\chi_{\mathbf{c}}(e) \equiv 0 \pmod{n}$.

Proof. Let $Y \setminus X = \{c\}$. If c is acyclic, the statement follows from Lemma 9. Let c be cyclic. By Lemma 1 there is $f \in F^*$ such that f(c) is acyclic. By Lemma 11 we have

$$\chi_{\mathbf{c}}(e) \equiv \chi_{\mathbf{c}}(f(e)) \pmod{n}$$

and by Lemma 9, $\chi_{\mathbf{c}}(f(e)) \equiv 0 \pmod{n}$. \Box

The last ingredient we need for the proof is the following denotation. For $\mathbf{c} = \langle c_1, \ldots, c_t \rangle \in C^*$ and $G \subseteq C$ put

$$\sigma_{G,\mathbf{c}} = \sum_{X \subseteq G} \sum_{d \in C \setminus G} \chi_{\mathbf{c}}(X, X \cup \{d\}).$$

Hence, $\sigma_{G,\mathbf{c}}$ is the difference between the number of times the path $\pi(\mathbf{c})$ goes from a subset of G to a set outside $\mathcal{P}(G)$ and the number of times $\pi(\mathbf{c})$ goes from a set outside $\mathcal{P}(G)$ to a subset of G.

Lemma 13. If $\mathbf{c} = \langle c_1, \ldots, c_t \rangle \in C^*$ and $G \subseteq C$ satisfy $p_t \notin G$, then $\sigma_{G,\mathbf{c}} = 1$.

Proof. The path $\pi(\mathbf{c})$ starts at $\emptyset \subseteq G$ and terminates at $p_t \notin G$. The statement just states that every time the path $\pi(\mathbf{c})$ comes from a set outside $\mathcal{P}(G)$ into $\mathcal{P}(G)$ it must later again leave $\mathcal{P}(G)$. \Box

Now we are ready to prove the theorem. Let $\mathbf{c} \in S$. We have $\emptyset \neq T \subseteq \operatorname{Core}(\mathbf{C})$. Choose a cyclic component $K = C_i$ of \mathbf{C} such that $T \cap K \neq \emptyset$. Let $H = \operatorname{Core}(\mathbf{C}) \setminus K$. Clearly $T \notin H$. Let us define an equivalence \approx on $K \times \mathcal{P}(H)$ by $(a, X) \approx (a', X')$ if a' = f(a), X' = f(X) for some $f \in F^*$. This is indeed an equivalence relation, since each $f \in F^*$ restricted to $\operatorname{Core}(\mathbf{C})$ is a permutation of a finite rank. Each block Lof \approx is a disjoint union $\bigcup_{c \in K} L_c$, where $L_c = \{(a, X) \in L : a = c\}$. If $c, d \in K$, then there is $f \in F^*$ such that f(c) = d and then the assignment $(c, X) \mapsto (f(c), f(X))$ is a bijection $L_c \to L_d$. Hence, all the sets L_c have the same cardinality k and then |L| = |K|.k. According to Lemma 11, there exists an integer b such that

$$\chi_{\mathbf{c}}(X, X \cup \{a\}) \equiv b \pmod{n}$$

for every $(a, X) \in L$. It follows that

$$\sum_{(a,X)\in L}\chi_{\mathbf{c}}(X,X\cup\{a\})\equiv |K|.k.b\pmod{n}.$$

Summing this for each block L of \approx we find that

$$\sum_{(a,X)\in K\times \mathcal{P}(H)}\chi_{\mathbf{c}}(X,X\cup\{a\})\equiv |K|.m\pmod{n}$$

for some integer m. Now we compute $\sigma_{H,\mathbf{c}}$. If $X \subset H$ and $a \notin \operatorname{Core}(\mathbf{C})$ then $\chi_{\mathbf{c}}(X, X \cup \{a\}) \equiv 0 \pmod{n}$ by Lemma 12. Hence,

$$\sigma_{H,\mathbf{c}} \equiv \sum_{X \subseteq H} \sum_{d \in K} \chi_{\mathbf{c}}(X, X \cup \{d\}) \equiv |K|.m \pmod{n}.$$

By Lemma 13 we have $\sigma_{H,c} = 1$, which is a contradiction, since |K| > 1 divides n. This completes the proof that **B** has no one-element subalgebra. Therefore, the algebras **A** and **B** are not isomorphic. Together with Lemma 8 and Theorem 1 we obtain the desired result.

Theorem 2. A finite unary algebra is cancellable among finite algebras if and only if it contains a one-element subalgebra. \Box

Finally, let us mention that a similar statement for other than unary algebras is known to be false. By [4, Corollary 2 on p. 323] there are groupoids that are cancellable among finite algebras but do not have one-element subalgebras.

References

- R. R. Appleson and L. Lovász: A characterization of cancellable k-ary structures, Period. Math. Hungar. 6, 1975, 17-19.
- [2] L. Lovász: Operations with structures, Acta Math. Acad. Sci. Hungar. 18, 1967, 321-328.
- [3] L. Lovász: On the cancellation law among finite relational structures, Period. Math. Hungar. 1, no. 2, 1971, 145-156.
- [4] R. McKenzie, G. McNulty, W. Taylor: Algebras, Lattices, Varieties, Vol.I, Wadsworth Pub., 1987.

Authors' address: Mathematical Institute, Slovak Academy of Sciences, Grešákova 6, 040 01 Košice, Slovak republic