CANCELLATION AMONG FINITE UNARY ALGEBRAS

MIrRoOSLAV PLOSCICA and MIRON ZELINA

ABSTRACT. We show that a unary algebra is cancellable among finite unary algebras
if and only if it contains a one—element subalgebra.

1. INTRODUCTION

We are interested in the following problem: for which algebras C the condition
A x C=B x C implies A = B?

Let us call an algebra C cancellable in a class I of algebras if C € I and C has
the following property: for all A, B € K, if A x C =2 B x C, then A = B. We
call C cancellable among finite algebras if C is cancellable in the class of all finite
algebras of its similarity type.

A characterization of algebras cancellable among finite algebras has not been
known for any nontrivial similarity type (see [4] for a survey). However, there
are some characterization results for relational structures (see [1], [3]). In case of
algebras, the best known result is the following theorem due to L. Lovéasz:

Theorem 1. (See [2], [4].) FEvery finite algebra having a one—element subalgebra
is cancellable among finite algebras. [

The aim of this paper is to prove the converse of this theorem for unary algebras
with an arbitrary number of operations. To make the paper accesible to a wider
audience, we explain here the basic concepts for unary algebras.

Let F be a set of unary operational symbols. By a unary algebra A = (A, F') we
mean a set A (called the underlying set) on which unary operations f# are defined
for all f € F. If A is understood, we usually write f instead of fA. We admit the
cases A =) and F = ().

A congruence on A = (A, F) is an equivalence relation ~ on the set A satisfying
the following compatibility condition for each f € F: if x ~ y then f(x) ~ f(y).
For any such congruence we can form the factor algebra A/~= (A/ ~, F'), whose
underlying set Asim is the set of all equivalence classes (blocks) of ~ and the
operations are defined in a natural way: f([z]) = [f(x)]. (Here [y] means the block
containing y.)

The product of algebras A = (A, F'), B = (B, F) is the unary algebra A x B =
(A x B, F') whose underlying set is the Cartesian product A x B and the operations
are defined by fA*B(z,y) = (fA(), fB(y)).

An isomorphism between A and B is a bijective mapping ¢ : A — B preserving
each f € F, i.e. satisfying p(f*(x)) = fB(p(x)) for every o € A. If there is an

Supported by Grant GA-SAV 362/92

Typeset by ApMS-TEX



2 MIROSLAV PLOSCICA AND MIRON ZELINA

isomorphism between A and B, we say that A and B are isomorphic and write
A =~ B.

For any set X, P(X) denotes the set of all subsets of X and |X| means the
cardinality of X. For any positive integer ¢, ¢t denotes the set {0,...,# —1}. For a
composition of mappings we adopt the convention that f o g(z) = f(g(z)).

We assume throughout that C = (C, F) is a finite unary algebra (i.e. the set
C is finite) without any one-element subalgebra. Our aim is to construct two
nonisomorphic algebras A and B of the same type as C such that A x C = B x C.

Let F™* be the set of all mappings C' — C' that can be obtained by a composition
of some finite number of operations from {f€ : f € F} (including the identity
mapping tc, which is the composition of the empty set of functions).

We say that an element x € C is f-cyclic (for f € F*), if f*(x) = x for some
positive integer k. If this condition is not fulfilled, we say that x is f-acyclic. An
element z is called cyclic, if it is f-cyclic for every f € F*. If z is not cyclic, it
is called acyclic. It is easy to see that if x is f-cyclic, then so is f(x). Let €(C)
be the family of all subsets of C' which are closed under all f € F* and consist
of cyclic elements. The family €(C) is clearly closed under set-theoretical union
and therefore contains the greatest element (with respect to set inclusion). This
greatest element will be called the core of C and denoted by Core(C). It is clear
that any f € F* restricted to Core(C) is a permutation. In fact, Core(C) is the
largest subset of C' on which all the operations are permutations. Let us remark
that the case Core(C)= ) is possible.

Hence, every element of Core(C) is cyclic. However, there might be cyclic
elements that do not belong to Core(C). Consider the following example. Let
A = {a,b,c} and define f,g,h,k : A — A by f(a) = ¢, f(b) = f(¢) = aq,
gla) = a, g(b) = g(c) =b, h = fof, k=gof. It is not difficult to check that
the set {f, g, h,k,¢} is composition closed (¢ is the identity mapping), the algebra
A = (A {f,g9,h,k,t}) has an empty core and the element a € A is cyclic. The
following assertion provides an alternative definition of Core(C).

Lemma 1. Core(C) ={z € C : f(x) is cyclic for every f € F*}

Proof. Clearly, any x € Core(C) satisfies the above condition. Conversely, suppose
that = ¢ Core(C). Let X = {f(z) : f € Fx}. Then X is closed under all f € F*.
Since F* contains the identity mapping, we have € X and hence X ¢ Core(C).
By the definition of Core(C), X must contain an acyclic element. O

We define an equivalence relation = on Core(C) by the rule a ~ b if and only
if b = f(a) for some f € F*. This is indeed an equivalence relation, since each
f € F* restricted to Core(C) is a permutation of a finite rank. Let Cy,...,Cs be
the equivalence classes of ~. (We will call them cyclic components of C.) Notice
that F* acts transitively on each cyclic component. Set

n=2|C|...|Cs|.
If Core(C) is empty then n = 2. Further, let us set
E={(X,)Y): XCYCC,|Y\X|=1}.

Hence E can be regarded as the set of all oriented edges in the Hasse diagram
(covering graph) of P(C) (the ordered set of all subsets of C'). Denote by C* the
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set of all finite sequences of elements from C' (including the empty sequence). For
any

c =<cp,...,c¢ >€ C* we define its path as a sequence 7(c) =< pg,...,pt > of
subsets of C, determined by the following rule:

p; = {c € C:coccurs odd number of times in the sequence < ¢1,...,¢; > }.

It is easy to see that m(c) is indeed a path in the Hasse diagram of P(C). The
starting set pg equals @), the set p; is called the terminal set for c. The characteristic
of ¢ is the map x. : £ — Z (the set of all integers) defined as follows. For each
e€ E,e=(A,B) set

Xele) ={j€t: (A, B) = (pj,pj+1)} — Hj€t: (A B) = (pj+1,pj)}-

Thus x.(e) is the difference between the number of times the path 7(c) traverses the

edge e upwards (from A to B) and the number of times 7(c) traverses e downwards
(from B to A).
For every map f : C — C we define the associated map f*: P(C) — P(C) by

f*(X)={acC: theset XN f*(a) has an odd number of elements }.

The motivation for this definition lies in the following easy fact: if < pg,...,p; >
is the path of ¢ =< ¢1,...,¢; >, then < f*(pg), ..., f*(p:) > is the path of
fle) =< fler),-.., fler) >.

In the next assertion we express x () by means of x.. First notice that (p;,p;jy1) €

E does not imply (f*(pj), f*(pj+1)) € E; the case (f*(pj+1), f*(p;)) € E is pos-
sible. That is why we need two kinds of ”inverse image of ¢ € E”. For every

f:C —C ande€ FE we set

fFllot={xY)e =
FHO™={(X,Y) e E: (f(Y),f (X)) =e}.

Lemma 2. For every f : C — C, c =< c1,...,¢¢ >€ C*, e € E, the following

equality holds:
Xf(c)(e) = Z Xe(®) — Z Xe(T).
zef=t(e)t zef=t(e)”

Proof. Clearly,

Z Xe(2) =

zef~t(e)t
S ietiz=mpp)H - D, Hic€t:z=(p1p)} =
zef-1(e)t zEf~1(e)t
={jet:(@ppj) e fH @O —{iet: jsr,p) € fH ()M} =
=[{jet:(pj.pj+1) € E,(f*(pj): f*(pj+1)) = e}—
i €t:(pj+1.p5) € E,(f*(pj+1), [ (pj)) = e}l
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Similarly,

> xel@)=l{j €t: (0y,p541) € B, (f*(pj1), /7 (py) = e} -
zef~1(e)”
{j €L: pj+1,p5) € E,(f"(p)), [*(pj+1)) = e}].

Since, for every j, either (pj,p;+1) € E or (pj+1,p;) € E we obtain that

Z Xe () — Z Xe(®) =

zEf—1(e)t z€f~1(e)~
=[{jet: (f"(p) [ (pj+1)) = e}l = {7 €t: (f(pj+1), [*(p;)) = e} =
= Xfe)(e). O

Let us define an equivalence relation ~ on C* by ¢ ~ d iff xc(e) = xd(e) (mod n)
for every e € E.

Lemma 3. Ifc ~d, then ¢ and d have the same terminal set.

Proof. For any X C C denote

ke(X)= > XelAB).
A=X or B=X

Hence, kc(X) is the number of times the path of ¢ enters X or leaves X. If X # ()
and X # p; (the terminal set for c), the number k.(X) is even, because whenever
m(c) enters X, it must leave it. If p, = (), then also k.(0) is even, otherwise kc(()
and kc(p;) are odd. The same holds for the sequence d. From ¢ ~ d it follows
that kc(X) = ka(X) (mod n). Since n is even, we have kc(X) = kqa(X) (mod 2).
Hence, either both terminal sets are equal () or they are both equal to the only
nonempty X with k.(X) odd. O

It is easy to see that the terminal set for c =< ¢y, ..., ¢; > has an even cardinality
if and only if ¢ is even. From this and Lemma 3 we deduce the following consequence.

Lemma 4. If c =< c1,...,c4 >€ C*, d =< dy,...,doyy1 >€ C*, then c ~ d
does not hold. [

Forevery f € Fandc =< cy,...,¢; >€ C* we define f(c) =< f(c1),..., f(cr) >.
By this way we obtain an algebra C* = (C*, F') of the same type as C.

Lemma 5. The relation ~ is a congruence of C*.

Proof. Let f € F, c,d € C*, ¢ ~d. Then xc(e) = xa(e) (mod n) for every e € E.
We need to show that x f(c)(e) = X fa)(€e) (mod n) for every e € E. But this follows
directly from Lemma 2. O

Denote by A (B) the set of blocks of ~ containing a sequence of even (odd)
length. By Lemma 4, the sets A and B are disjoint. It is easy to see that both
A and B are closed under all f € F. So we have two algebras A = (A, F) and
B = (B, F) of the same type as C. They are subalgebras of C*/~.
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Lemma 6. Let ¢ =< c¢1,...,¢¢ > C*, d =< dy,...,d, >€ C* be such that
c~d. Then < c1,...,¢,¢c >~<dy,...,dy,c> for every c e C.

Proof. Denote € =< c¢y,...,¢,¢>,d =<dy,...,dy,,c>. The path of € is obtained
from the path < pg,...,p: > of ¢ by adding one trasition from p; to p; U {¢} (if
c & p) ortop\ {c} (if ¢ € p;). The same holds for d and d. Since ¢ and d have
the same terminal set and ¢ ~ d, we deduce that € ~d. O

By a similar reasoning one can show the following assertion.

Lemma 7. Let c =< ¢1,...,¢; >€ C*. Then < ¢1,...,¢1,>~< C1,...,C4,C,C >
for everyce C. O

Lemma 8. A xC=B xC.

Proof. For any sequence c let [c] denote the block of ~ containing c. We define a
mapping ¢ : AXC — Bx Casfollows. If [c] € A, c=<¢1,...,¢¢ >and c € C,
then

*) o([c],e) = ([< ey yet, ¢ >],0).

This definition is correct by Lemma 6. The mapping ¢ is bijective because the
same formula (*) defines the inverse mapping B x C — A x C. (See Lemma 7.)
Finally, it is straightforward to show that ¢ preserves all f € F. O

It remains to show that A and B are not isomorphic. It is easily seen that
algebra A has a one-element subalgebra ({[0]}, F'), where @ is the empty sequence.
(Of course, the block [@)] contains nonempty sequences as well.) We will prove that
B has no singleton subalgebra.

Suppose to the contrary that B has a singleton subalgebra S = ({S}, F'). Hence
S is a block of ~ and for every c € S, f € F' we have ¢ ~ f(c). Since the relation ~
is transitive, it follows that ¢ ~ f(c) holds for every ¢ € S and f € F*. By Lemma
3, all ¢ € S have the same terminal set. We denote it by 7. Since the sequences
in S are of odd lengths, the set T" has an odd number of elements. In particular,

T # 0.
Lemma 9. Letce S. Then

(i) ife=(X,Y) € E is such that Y contains an acyclic element, then x.(e) =0
(mod n);
(ii) the terminal set T consists of cyclic elements.

Proof. Suppose that a € Y is a f-acyclic element for some f € F*. Then a ¢
im(f*) = f*(C) for a sufficiently large integer k. We have f* € F* ¢ ~ f*(c),
hence xc(e) = X pr(ey(€) (mod n). Since the sequence f*(c) does not contain the
element a, clearly xc)(e) =0and a ¢ T. O

Lemma 10. For every f € F* there isd € S consisting of f-cyclic elements. The
terminal set T is a subset of Core(C).

Proof. Clearly, there is an integer k such that im(f*) is the set of all f-cyclic
elements. If we choose ¢ € S arbitrarily, then d = f*(c) is the desired sequence.

An element a € C belongs to T if and only if it occurs an odd number of times
in d. Since f permutes the set of all f-cyclic elements and T is the terminal set of
both d and f(d), it follows that f permutes T'.
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Hence, T is closed under all f € F*. By Lemma 9, T consists of cyclic elements.
According to the definition of core, we have T' C Core(C). O

Notice that in the case Core(C) = ) we already have a contradiction (since
() £ T C Core(C)). If the core of C is not empty, we must go deeper.

Lemma 11. Let ¢ € S and f € F*. Suppose that e = (X,Y) € E is such that
Y contains f-cyclic elements only. Then f(e) = (f(X), f(Y)) € E and xc(e) =
Xe(f(€)) (mod n).

Proof. The function f is bijective on the set of all f-cyclic elements, hence f(e) € F
holds. We use Lemma 2 with f(e) now playing the role of e. It is not difficult to
see that if z = (U, V) € f=*(f(e))™ U f~1(f(e))” then either x = e or V contains
an f-acyclic element. If V contains an f-acyclic element then by Lemma 9 x.(z) =
0 (mod n). Since e € f~*(f(e))*, Lemma 2 implies that xfc)(f(€)) = xc(e)
(mod n). Since ¢ ~ f(c), we obtain the desired statement. [

Lemma 12. Let c € S and let e = (X,Y) € E be such that X C Core(C) and
Y ¢ Core(C). Then xc(e) =0 (mod n).

Proof. Let Y \ X = {c}. If ¢ is acyclic, the statement follows from Lemma 9. Let
¢ be cyclic. By Lemma 1 there is f € F* such that f(c) is acyclic. By Lemma 11
we have

Xe(€) = xc(f(€)) (mod n)
and by Lemma 9, x.(f(e)) =0 (mod n). O

The last ingredient we need for the proof is the following denotation. For
c=<cy,...,c; >€ C* and G C C put

oae= Y, Y. XelX,XU{d}).

XCG deC\G

Hence, og c is the difference between the number of times the path 7(c) goes from
a subset of G to a set outside P(G) and the number of times 7(c) goes from a set
outside P(G) to a subset of G.

Lemma 13. Ifc=<c,...,¢; >€ C* and G C C satisfy p: ;(_ G, then og.c = 1.

Proof. The path m(c) starts at ) C G and terminates at p; ¢ G. The statement
just states that every time the path m(c) comes from a set outside P(G) into P(G)
it must later again leave P(G). O

Now we are ready to prove the theorem. Let ¢ € S. We have ) # T C Core(C).
Choose a cyclic component K = C; of C such that TNK # (. Let H = Core(C)\ K.
Clearly T ¢ H. Let us define an equivalence ~ on K x P(H) by (a,X) = (a/, X') if
a' = f(a), X' = f(X) for some f € F*. This is indeed an equivalence relation, since
each f € F* restricted to Core(C) is a permutation of a finite rank. Each block L
of ~ is a disjoint union | J, ¢ s L¢, where L. = {(a, X) € L:a =c}. If ¢,d € K, then
there is f € F* such that f(c) = d and then the assignment (¢, X) — (f(c), f(X))
is a bijection L. — Lg4. Hence, all the sets L. have the same cardinality & and then
|L| = |K|.k. According to Lemma 11, there exists an integer b such that

Xe(X,XU{a})=b (modn)
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for every (a, X) € L. It follows that

Z Xe(X, X U{a}) = |K|.kb (mod n).
(a,X)€EL

Summing this for each block L of ~ we find that

Z Xe(X, X U{a}) =|K|.m (modn)
(a,X)eEKXP(H)

for some integer m. Now we compute ogc. If X C H and a ¢ Core(C) then
Xe(X, X U{a}) =0 (mod n) by Lemma 12. Hence,

OHe = Z Z Xe(X, X U{d}) =|K|.m (mod n).

XCHdeK

By Lemma 13 we have oy, = 1, which is a contradiction, since |K| > 1 divides
n. This completes the proof that B has no one-element subalgebra. Therefore, the
algebras A and B are not isomorphic. Together with Lemma 8 and Theorem 1 we
obtain the desired result.

Theorem 2. A finite unary algebra is cancellable among finite algebras if and only
if it contains a one-element subalgebra. O

Finally, let us mention that a similar statement for other than unary algebras
is known to be false. By [4, Corollary 2 on p. 323] there are groupoids that are
cancellable among finite algebras but do not have one-element subalgebras.
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