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Abstract. We show that a unary algebra is cancellable among finite unary algebras
if and only if it contains a one–element subalgebra.

1. Introduction

We are interested in the following problem: for which algebras C the condition
A×C ∼= B×C implies A ∼= B?

Let us call an algebra C cancellable in a class K of algebras if C ∈ K and C has
the following property: for all A, B ∈ K, if A × C ∼= B × C, then A ∼= B. We
call C cancellable among finite algebras if C is cancellable in the class of all finite
algebras of its similarity type.

A characterization of algebras cancellable among finite algebras has not been
known for any nontrivial similarity type (see [4] for a survey). However, there
are some characterization results for relational structures (see [1], [3]). In case of
algebras, the best known result is the following theorem due to L. Lovász:

Theorem 1. (See [2], [4].) Every finite algebra having a one–element subalgebra
is cancellable among finite algebras. ¤

The aim of this paper is to prove the converse of this theorem for unary algebras
with an arbitrary number of operations. To make the paper accesible to a wider
audience, we explain here the basic concepts for unary algebras.

Let F be a set of unary operational symbols. By a unary algebra A = (A, F ) we
mean a set A (called the underlying set) on which unary operations fA are defined
for all f ∈ F . If A is understood, we usually write f instead of fA. We admit the
cases A = ∅ and F = ∅.

A congruence on A = (A,F ) is an equivalence relation ∼ on the set A satisfying
the following compatibility condition for each f ∈ F : if x ∼ y then f(x) ∼ f(y).
For any such congruence we can form the factor algebra A/∼= (A/ ∼, F ), whose
underlying set Asim is the set of all equivalence classes (blocks) of ∼ and the
operations are defined in a natural way: f([x]) = [f(x)]. (Here [y] means the block
containing y.)

The product of algebras A = (A, F ), B = (B,F ) is the unary algebra A×B =
(A×B, F ) whose underlying set is the Cartesian product A×B and the operations
are defined by fA×B(x, y) = (fA(x), fB(y)).

An isomorphism between A and B is a bijective mapping ϕ : A −→ B preserving
each f ∈ F , i.e. satisfying ϕ(fA(x)) = fB(ϕ(x)) for every x ∈ A. If there is an
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isomorphism between A and B, we say that A and B are isomorphic and write
A ∼= B.

For any set X, P(X) denotes the set of all subsets of X and |X| means the
cardinality of X. For any positive integer t, t denotes the set {0, . . . , t− 1}. For a
composition of mappings we adopt the convention that f ◦ g(x) = f(g(x)).

We assume throughout that C = (C, F ) is a finite unary algebra (i.e. the set
C is finite) without any one-element subalgebra. Our aim is to construct two
nonisomorphic algebras A and B of the same type as C such that A×C ∼= B×C.

Let F ∗ be the set of all mappings C −→ C that can be obtained by a composition
of some finite number of operations from {fC : f ∈ F} (including the identity
mapping ιC , which is the composition of the empty set of functions).

We say that an element x ∈ C is f -cyclic (for f ∈ F ∗), if fk(x) = x for some
positive integer k. If this condition is not fulfilled, we say that x is f -acyclic. An
element x is called cyclic, if it is f -cyclic for every f ∈ F ∗. If x is not cyclic, it
is called acyclic. It is easy to see that if x is f -cyclic, then so is f(x). Let C(C)
be the family of all subsets of C which are closed under all f ∈ F ∗ and consist
of cyclic elements. The family C(C) is clearly closed under set-theoretical union
and therefore contains the greatest element (with respect to set inclusion). This
greatest element will be called the core of C and denoted by Core(C). It is clear
that any f ∈ F ∗ restricted to Core(C) is a permutation. In fact, Core(C) is the
largest subset of C on which all the operations are permutations. Let us remark
that the case Core(C)= ∅ is possible.

Hence, every element of Core(C) is cyclic. However, there might be cyclic
elements that do not belong to Core(C). Consider the following example. Let
A = {a, b, c} and define f, g, h, k : A −→ A by f(a) = c, f(b) = f(c) = a,
g(a) = a, g(b) = g(c) = b, h = f ◦ f , k = g ◦ f . It is not difficult to check that
the set {f, g, h, k, ι} is composition closed (ι is the identity mapping), the algebra
A = (A, {f, g, h, k, ι}) has an empty core and the element a ∈ A is cyclic. The
following assertion provides an alternative definition of Core(C).

Lemma 1. Core(C) = {x ∈ C : f(x) is cyclic for every f ∈ F ∗}
Proof. Clearly, any x ∈Core(C) satisfies the above condition. Conversely, suppose
that x /∈Core(C). Let X = {f(x) : f ∈ F∗}. Then X is closed under all f ∈ F ∗.
Since F ∗ contains the identity mapping, we have x ∈ X and hence X *Core(C).
By the definition of Core(C), X must contain an acyclic element. ¤

We define an equivalence relation ≈ on Core(C) by the rule a ≈ b if and only
if b = f(a) for some f ∈ F ∗. This is indeed an equivalence relation, since each
f ∈ F ∗ restricted to Core(C) is a permutation of a finite rank. Let C1, . . . , Cs be
the equivalence classes of ≈. (We will call them cyclic components of C.) Notice
that F ∗ acts transitively on each cyclic component. Set

n = 2.|C1| . . . |Cs|.

If Core(C) is empty then n = 2. Further, let us set

E = { (X, Y ) : X ⊆ Y ⊆ C, |Y \X| = 1 }.

Hence E can be regarded as the set of all oriented edges in the Hasse diagram
(covering graph) of P(C) (the ordered set of all subsets of C). Denote by C∗ the
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set of all finite sequences of elements from C (including the empty sequence). For
any
c =< c1, . . . , ct >∈ C∗ we define its path as a sequence π(c) =< p0, . . . , pt > of
subsets of C, determined by the following rule:

pj = { c ∈ C : c occurs odd number of times in the sequence < c1, . . . , cj > }.

It is easy to see that π(c) is indeed a path in the Hasse diagram of P(C). The
starting set p0 equals ∅, the set pt is called the terminal set for c. The characteristic
of c is the map χc : E → Z (the set of all integers) defined as follows. For each
e ∈ E, e = (A, B) set

χc(e) = |{j ∈ t : (A,B) = (pj , pj+1)}| − |{j ∈ t : (A,B) = (pj+1, pj)}|.

Thus χc(e) is the difference between the number of times the path π(c) traverses the
edge e upwards (from A to B) and the number of times π(c) traverses e downwards
(from B to A).

For every map f : C → C we define the associated map f∗ : P(C) → P(C) by

f∗(X) = { a ∈ C : the set X ∩ f−1(a) has an odd number of elements }.

The motivation for this definition lies in the following easy fact: if < p0, . . . , pt >
is the path of c =< c1, . . . , ct >, then < f∗(p0), . . . , f∗(pt) > is the path of
f(c) =< f(c1), . . . , f(ct) >.

In the next assertion we express χf(c) by means of χc. First notice that (pj , pj+1) ∈
E does not imply (f∗(pj), f∗(pj+1)) ∈ E; the case (f∗(pj+1), f∗(pj)) ∈ E is pos-
sible. That is why we need two kinds of ”inverse image of e ∈ E”. For every
f : C → C and e ∈ E we set

f−1(e)+ = { (X, Y ) ∈ E : (f∗(X), f∗(Y )) = e },
f−1(e)− = { (X, Y ) ∈ E : (f∗(Y ), f∗(X)) = e }.

Lemma 2. For every f : C → C, c =< c1, . . . , ct >∈ C∗, e ∈ E, the following
equality holds:

χf(c)(e) =
∑

x∈f−1(e)+

χc(x)−
∑

x∈f−1(e)−
χc(x).

Proof. Clearly,

∑

x∈f−1(e)+

χc(x) =

∑

x∈f−1(e)+

|{j ∈ t : x = (pj , pj+1)}| −
∑

x∈f−1(e)+

|{j ∈ t : x = (pj+1, pj)}| =

= |{j ∈ t : (pj , pj+1) ∈ f−1(e)+}| − |{j ∈ t : (pj+1, pj) ∈ f−1(e)+}| =
= |{j ∈ t : (pj , pj+1) ∈ E, (f∗(pj), f∗(pj+1)) = e}|−
|{j ∈ t : (pj+1, pj) ∈ E, (f∗(pj+1), f∗(pj)) = e}|.
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Similarly,

∑

x∈f−1(e)−
χc(x) =|{j ∈ t : (pj , pj+1) ∈ E, (f∗(pj+1), f∗(pj)) = e}|−

|{j ∈ t : (pj+1, pj) ∈ E, (f∗(pj), f∗(pj+1)) = e}|.

Since, for every j, either (pj , pj+1) ∈ E or (pj+1, pj) ∈ E we obtain that

∑

x∈f−1(e)+

χc(x)−
∑

x∈f−1(e)−
χc(x) =

= |{j ∈ t : (f∗(pj), f∗(pj+1)) = e}| − |{j ∈ t : (f∗(pj+1), f∗(pj)) = e}| =
= χf(c)(e). ¤

Let us define an equivalence relation ∼ on C∗ by c ∼ d iff χc(e) ≡ χd(e) (mod n)
for every e ∈ E.

Lemma 3. If c ∼ d, then c and d have the same terminal set.

Proof. For any X ⊆ C denote

kc(X) =
∑

A=X or B=X

χc(A,B).

Hence, kc(X) is the number of times the path of c enters X or leaves X. If X 6= ∅
and X 6= pt (the terminal set for c), the number kc(X) is even, because whenever
π(c) enters X, it must leave it. If pt = ∅, then also kc(∅) is even, otherwise kc(∅)
and kc(pt) are odd. The same holds for the sequence d. From c ∼ d it follows
that kc(X) ≡ kd(X) (mod n). Since n is even, we have kc(X) ≡ kd(X) (mod 2).
Hence, either both terminal sets are equal ∅ or they are both equal to the only
nonempty X with kc(X) odd. ¤

It is easy to see that the terminal set for c =< c1, . . . , ct > has an even cardinality
if and only if t is even. From this and Lemma 3 we deduce the following consequence.

Lemma 4. If c =< c1, . . . , c2t >∈ C∗, d =< d1, . . . , d2u+1 >∈ C∗, then c ∼ d
does not hold. ¤

For every f ∈ F and c =< c1, . . . , ct >∈ C∗ we define f(c) =< f(c1), . . . , f(ct) >.
By this way we obtain an algebra C∗ = (C∗, F ) of the same type as C.

Lemma 5. The relation ∼ is a congruence of C∗.

Proof. Let f ∈ F , c,d ∈ C∗, c ∼ d. Then χc(e) ≡ χd(e) (mod n) for every e ∈ E.
We need to show that χf(c)(e) ≡ χf(d)(e) (mod n) for every e ∈ E. But this follows
directly from Lemma 2. ¤

Denote by A (B) the set of blocks of ∼ containing a sequence of even (odd)
length. By Lemma 4, the sets A and B are disjoint. It is easy to see that both
A and B are closed under all f ∈ F . So we have two algebras A = (A,F ) and
B = (B,F ) of the same type as C. They are subalgebras of C∗/∼.
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Lemma 6. Let c =< c1, . . . , ct >∈ C∗, d =< d1, . . . , du >∈ C∗ be such that
c ∼ d. Then < c1, . . . , ct, c >∼< d1, . . . , du, c > for every c ∈ C.

Proof. Denote c =< c1, . . . , ct, c >, d =< d1, . . . , du, c >. The path of c is obtained
from the path < p0, . . . , pt > of c by adding one trasition from pt to pt ∪ {c} (if
c /∈ pt) or to pt \ {c} (if c ∈ pt). The same holds for d and d. Since c and d have
the same terminal set and c ∼ d, we deduce that c ∼ d. ¤

By a similar reasoning one can show the following assertion.

Lemma 7. Let c =< c1, . . . , ct >∈ C∗. Then < c1, . . . , ct, >∼< c1, . . . , ct, c, c >
for every c ∈ C. ¤
Lemma 8. A×C ∼= B×C.

Proof. For any sequence c let [c] denote the block of ∼ containing c. We define a
mapping ϕ : A×C −→ B×C as follows. If [c] ∈ A, c =< c1, . . . , ct > and c ∈ C,
then

(*) ϕ([c], c) = ([< c1, . . . , ct, c >], c).

This definition is correct by Lemma 6. The mapping ϕ is bijective because the
same formula (*) defines the inverse mapping B×C −→ A×C. (See Lemma 7.)
Finally, it is straightforward to show that ϕ preserves all f ∈ F . ¤

It remains to show that A and B are not isomorphic. It is easily seen that
algebra A has a one-element subalgebra ({[∅]}, F ), where ∅ is the empty sequence.
(Of course, the block [∅] contains nonempty sequences as well.) We will prove that
B has no singleton subalgebra.

Suppose to the contrary that B has a singleton subalgebra S = ({S}, F ). Hence
S is a block of ∼ and for every c ∈ S, f ∈ F we have c ∼ f(c). Since the relation ∼
is transitive, it follows that c ∼ f(c) holds for every c ∈ S and f ∈ F ∗. By Lemma
3, all c ∈ S have the same terminal set. We denote it by T . Since the sequences
in S are of odd lengths, the set T has an odd number of elements. In particular,
T 6= ∅.
Lemma 9. Let c ∈ S. Then

(i) if e = (X, Y ) ∈ E is such that Y contains an acyclic element, then χc(e) ≡ 0
(mod n);

(ii) the terminal set T consists of cyclic elements.

Proof. Suppose that a ∈ Y is a f -acyclic element for some f ∈ F ∗. Then a /∈
im(fk) = fk(C) for a sufficiently large integer k. We have fk ∈ F ∗, c ∼ fk(c),
hence χc(e) ≡ χfk(c)(e) (mod n). Since the sequence fk(c) does not contain the
element a, clearly χf(c)(e) = 0 and a /∈ T . ¤
Lemma 10. For every f ∈ F ∗ there is d ∈ S consisting of f-cyclic elements. The
terminal set T is a subset of Core(C).

Proof. Clearly, there is an integer k such that im(fk) is the set of all f -cyclic
elements. If we choose c ∈ S arbitrarily, then d = fk(c) is the desired sequence.

An element a ∈ C belongs to T if and only if it occurs an odd number of times
in d. Since f permutes the set of all f -cyclic elements and T is the terminal set of
both d and f(d), it follows that f permutes T .
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Hence, T is closed under all f ∈ F ∗. By Lemma 9, T consists of cyclic elements.
According to the definition of core, we have T ⊆ Core(C). ¤

Notice that in the case Core(C) = ∅ we already have a contradiction (since
∅ 6= T ⊆ Core(C)). If the core of C is not empty, we must go deeper.

Lemma 11. Let c ∈ S and f ∈ F ∗. Suppose that e = (X, Y ) ∈ E is such that
Y contains f -cyclic elements only. Then f(e) = (f(X), f(Y )) ∈ E and χc(e) ≡
χc(f(e)) (mod n).

Proof. The function f is bijective on the set of all f -cyclic elements, hence f(e) ∈ E
holds. We use Lemma 2 with f(e) now playing the role of e. It is not difficult to
see that if x = (U, V ) ∈ f−1(f(e))+ ∪ f−1(f(e))− then either x = e or V contains
an f -acyclic element. If V contains an f -acyclic element then by Lemma 9 χc(x) ≡
0 (mod n). Since e ∈ f−1(f(e))+, Lemma 2 implies that χf(c)(f(e)) ≡ χc(e)
(mod n). Since c ∼ f(c), we obtain the desired statement. ¤
Lemma 12. Let c ∈ S and let e = (X, Y ) ∈ E be such that X ⊆ Core(C) and
Y * Core(C). Then χc(e) ≡ 0 (mod n).

Proof. Let Y \X = {c}. If c is acyclic, the statement follows from Lemma 9. Let
c be cyclic. By Lemma 1 there is f ∈ F ∗ such that f(c) is acyclic. By Lemma 11
we have

χc(e) ≡ χc(f(e)) (mod n)

and by Lemma 9, χc(f(e)) ≡ 0 (mod n). ¤
The last ingredient we need for the proof is the following denotation. For

c =< c1, . . . , ct >∈ C∗ and G ⊆ C put

σG,c =
∑

X⊆G

∑

d∈C\G
χc(X, X ∪ {d}).

Hence, σG,c is the difference between the number of times the path π(c) goes from
a subset of G to a set outside P(G) and the number of times π(c) goes from a set
outside P(G) to a subset of G.

Lemma 13. If c =< c1, . . . , ct >∈ C∗ and G ⊆ C satisfy pt * G, then σG,c = 1.

Proof. The path π(c) starts at ∅ ⊆ G and terminates at pt * G. The statement
just states that every time the path π(c) comes from a set outside P(G) into P(G)
it must later again leave P(G). ¤

Now we are ready to prove the theorem. Let c ∈ S. We have ∅ 6= T ⊆ Core(C).
Choose a cyclic component K = Ci of C such that T∩K 6= ∅. Let H = Core(C)\K.
Clearly T * H. Let us define an equivalence ≈ on K×P(H) by (a,X) ≈ (a′, X ′) if
a′ = f(a), X ′ = f(X) for some f ∈ F ∗. This is indeed an equivalence relation, since
each f ∈ F ∗ restricted to Core(C) is a permutation of a finite rank. Each block L
of ≈ is a disjoint union

⋃
c∈K Lc, where Lc = {(a, X) ∈ L : a = c}. If c, d ∈ K, then

there is f ∈ F ∗ such that f(c) = d and then the assignment (c,X) 7→ (f(c), f(X))
is a bijection Lc → Ld. Hence, all the sets Lc have the same cardinality k and then
|L| = |K|.k. According to Lemma 11, there exists an integer b such that

χc(X,X ∪ {a}) ≡ b (mod n)
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for every (a,X) ∈ L. It follows that

∑

(a,X)∈L

χc(X, X ∪ {a}) ≡ |K|.k.b (mod n).

Summing this for each block L of ≈ we find that

∑

(a,X)∈K×P(H)

χc(X,X ∪ {a}) ≡ |K|.m (mod n)

for some integer m. Now we compute σH,c. If X ⊂ H and a /∈ Core(C) then
χc(X, X ∪ {a}) ≡ 0 (mod n) by Lemma 12. Hence,

σH,c ≡
∑

X⊆H

∑

d∈K

χc(X,X ∪ {d}) ≡ |K|.m (mod n).

By Lemma 13 we have σH,c = 1, which is a contradiction, since |K| > 1 divides
n. This completes the proof that B has no one-element subalgebra. Therefore, the
algebras A and B are not isomorphic. Together with Lemma 8 and Theorem 1 we
obtain the desired result.

Theorem 2. A finite unary algebra is cancellable among finite algebras if and only
if it contains a one-element subalgebra. ¤

Finally, let us mention that a similar statement for other than unary algebras
is known to be false. By [4, Corollary 2 on p. 323] there are groupoids that are
cancellable among finite algebras but do not have one-element subalgebras.
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