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Abstract. For any distributive lattice L we construct its extension F(I(L)) with

the property that every isotone compatible function on L can be interpolated by a

polynomial of F(I(L). Further, we characterize all extensions with this property and

show that our construction is in some sense the simplest possible.

Introduction

Let A be a subalgebra of an algebra B. A function f : An −→ A is called
compatible if, for every congruence θ on A, (x1, y1) ∈ θ, . . . , (xn, yn) ∈ θ implies
(f(x1, . . . , xn), f(y1, . . . , yn)) ∈ θ. We say that A is affine complete in B if every
compatible function on A can be interpolated by a polynomial of B. Note that the
converse of this property is always true, provided that we consider algebras with
the Congruence extension property (like in the case of distributive lattices): every
function on A, which is representable by a polynomial of B, must be compatible.

This concept is a generalization of the usual (absolute) affine completeness: an
algebra A is affine complete iff it is affine complete in itself.

There are several sources of motivation for this paper. The first one is the
following characterization of affine complete distributive lattices.

1.1. Theorem([8]). A distributive lattice L is affine complete iff the following
conditions hold:

(i) L does not contain a nontrivial Boolean interval;
(ii) every proper almost principal ideal in L is principal;
(iii) every proper almost principal filter in L is principal.

An ideal I in L is called almost principal if I∩ ↓x is principal for every x ∈ L.
We use the denotation ↓x = {y ∈ L | y ≤ x} and dually for ↑x. Almost principal
filters are defined analogously. An ideal (or filter) I is called proper if I 6= L. A
Boolean interval is called nontrivial if it has at least two elements.

If the condition (i) fails then L has a unary compatible function that is not
isotone (order-preserving). It is clear that such a function cannot be interpolated
by any lattice polynomial.

If (i) is satisfied but (ii) or (iii) fails, the situation is different. By [2], (i) implies
that every compatible function is isotone. (In [3] this was proved for bounded
distributive lattices.) The reason why L is not affine complete is that it lacks some
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suitable constants. Therefore, in this case one can hope to find a lattice M such
that L is affine complete in M . We call this an affine completion of L and we
present a canonical way how to construct such a completion.

Our construction is motivated by the paper [4] of Grätzer and Schmidt. They
considered L embedded in the ideal lattice I(L) and the filter lattice F (L). Their
conjecture was that if (i) is satisfied then every compatible function on L can
be obtained by a composition of polynomials of I(L) and F (L). This conjecture
is true for unary functions but fails for functions of higher arities. Nevertheless,
investigating the polynomials of I(L) and F (L) has proved fruitful in our paper.

After constructing the ”canonical” affine completion, we consider the question
of other possible completions. The problem is as follows. Let L be a sublattice of
a distributive lattice M . Under which conditions is L affine complete in M ? Our
original conjecture was that the canonical completion of L should be embeddable
in any such M . This conjecture is wrong but we shall show that it is not far from
the truth either.

A special case of the above problem was solved in [6] in connection with investi-
gations of affine complete Stone algebras. If L is a Stone algebra then D(L) denotes
its filter of all dense elements.

1.2. Theorem([6]). Let L be a Stone algebra. The following statements are equiv-
alent:

(1) L is affine complete;
(2) D(L) is affine complete (as a lattice) in L;
(3) the following conditions hold:

(B) D(L) does not contain a nontrivial Boolean interval;
(F) for every almost principal filter F in D(L) there is a ∈ L such that

F = D(L)∩ ↑a.

The equivalence of (2) and (3) solves our problem in a very special case when
L forms a filter in M . We shall show that, in general, (F) must be replaced by
another (more complicated) condition.

Finally, we would like to mention that some ideas appearing in this paper stem
also from the papers [1],[3], [5], [7] and [9].

2. Isotone compatible functions

For bounded distributive lattices, the situation is clear by Grätzer’s paper [3].
A bounded distributive lattice is affine complete if and only if it does not contain
a nontrivial Boolean interval. Actually, more is proved in [3]. We shall need the
following assertion.

2.1. Lemma([3], Corollary 1). Let L be a bounded distributive lattice. Then every
isotone compatible function on L is a polynomial of L.

Now we shall show some basic properties of compatible functions on (possibly)
unbounded distributive lattices.

2.2. Lemma. Let f : L −→ L be a unary isotone compatible function on a
distributive lattice L. Then

(i) f is idempotent
(ii) the set {x ∈ L | x ≤ f(y) for some y ∈ L} is an almost principal ideal.
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Proof. Let x ∈ L. We claim that f(x) ≤ x ∨ f(x ∧ f(x)). For contradiction,
suppose that f(x) £ x∨ f(x∧ f(x)). Then there is a prime ideal P in L such that
x ∨ f(x ∧ f(x)) ∈ P and f(x) /∈ P . Let θ be the congruence on L having P and
L \ P as its equivalence classes. Then (x, x ∧ f(x)) ∈ θ (since both x and x ∧ f(x)
belong to P ), but (f(x), f(x∧ f(x))) /∈ θ, a contradiction with the compatibility of
f .

Hence, f(x) ≤ x∨f(x∧f(x)). Since f is isotone, we obtain that f(x) ≤ x∨f 2(x),
where f2(x) means f(f(x)). Symmetrically we can prove that f(x) ≥ x ∧ f 2(x).

By a similar method one can prove that x ∧ f(x) ≤ f 2(x) ≤ x ∨ f(x). (It is a
consequence of [8], Lemma 2.4.) We obtain that x ∧ f(x) ≤ x ∧ f 2(x) ≤ x ∧ f(x),
hence x ∧ f(x) = x ∧ f2(x), and similarly, x ∨ f(x) = x ∨ f 2(x). Therefore,
f2(x) = f2(x)∨(x∧f(x)) = (f2(x)∨x)∧(f2(x)∨f(x)) = (x∨f(x))∧(f 2(x)∨f(x)) =
(x ∧ f2(x)) ∨ f(x) = (x ∧ f(x)) ∨ f(x) = f(x).

The proof of (ii) is the same as the proof of 2.6(iii) in [8]. ¤

2.3. Lemma. Let f : Ln −→ L be an isotone compatible function on a distribu-
tive lattice L. Let M ⊆ {1, . . . , n}. Then for every x1, . . . , xn ∈ L the equality
f(x1, . . . , xn) = f(z1, . . . , zn) holds, where

zi =

{

xi if i /∈M,

f(x1, . . . , xn) if i ∈M.

Proof. We proceed by induction on the cardinality of M . If M = ∅, the statement
is trivial. Suppose now that |M | ≥ 1 and choose j ∈M . Let N =M \ {j}. Let us
consider the unary function g : L −→ L defined by g(y) = f(y1, . . . , yn), where

yi =











xi if i /∈M,

f(x1, . . . , xn) if i ∈ N,

y if i = j.

It is clear that g is isotone and compatible. By 2.2(i), it is idempotent, hence
g(xj) = g(g(xj)). Since g(xj) = f(t1, . . . , tn), where

ti =

{

xi if i /∈ N,

f(x1, . . . , xn) if i ∈ N,

the induction hypothesis yields that g(xj) = f(x1, . . . , xn). Hence, f(x1, . . . , xn) =
g(f(x1, . . . , xn)) and, obviously, g(f(x1, . . . , xn)) = f(z1, . . . , zn). ¤

2.4. Lemma. Let f : Ln −→ L be an isotone compatible function. Let M ⊆
{1, . . . , n}. For every x1, . . . , xn, y1, . . . , yn ∈ L the following holds true:

f(x1, . . . , xn) ≤ f(z1, . . . , zn) ∨
∨

i∈M

xi,

f(x1, . . . , xn) ≥ f(z1, . . . , zn) ∧
∧

i∈M

xi,

where

zi =

{

xi if i /∈M,

yi if i ∈M.
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Proof. We prove the first inequality. For contradiction, assume that f(x1, . . . , xn) £
f(z1, . . . , zn)∨

∨

i∈M xi. Then there is a prime ideal P such that f(x1, . . . , xn) /∈ P
and f(z1, . . . , zn) ∨

∨

i∈M xi ∈ P . Let θ be the congruence on L whose equivalence
classes are P and L \ P .

Since f(z1, . . . , zn) ∈ P and xi ∈ P for every i ∈M , we have (f(z1, . . . , zn), xi) ∈
θ for every i ∈M . The compatibility of f yields that

(f(x1, . . . , xn), f(u1, . . . , un)) ∈ θ,

where

ui =

{

xi (= zi) if i /∈M,

f(z1, . . . , zn) if i ∈M.

By 2.3, f(u1, . . . , un) = f(z1, . . . , zn) and hence

(f(x1, . . . , xn), f(z1, . . . , zn)) ∈ θ,

a contradiction. ¤

3. The canonical affine completion

If I is an almost principal ideal in a distributive lattice L, then for every x ∈ L
the ideal I∩ ↓x has a greatest element. We denote this element by xI . Similarly,
if F is an almost principal filter, then F∩ ↑ x =↑ xF . It is easy to prove (see [4])
that the set I(L) of all almost principal ideals of L forms a sublattice of the lattice
I(L) of all ideals of L. We have the canonical embedding x 7→↓x of L into I(L).

Similarly, we consider the lattice F(L) of all almost principal filters of L. Note
that F(L) is ordered by the inverse inclusion, i.e. F1 ≤ F2 iff F1 ⊇ F2. The canonical
embedding L −→ F(L) is given by x 7→↑x.

The lattice I(L) always has a greatest element, since L itself is regarded as an
almost principal ideal. Similarly, L is the least element of F(L).

3.1. Lemma. Every distributive lattice L is an ideal in I(L). (More precisely, the
set {↓x | x ∈ L} is an ideal in I(L).) Similarly, L is a filter in F(L).

Proof. It is clear that the set {↓ x | x ∈ L} is closed under joins. Further, let
I ∈ I(L), I ⊆↓x for some x ∈ L. Then I∩ ↓x is a principal ideal, but I∩ ↓x = I,
hence I ∈ {↓x | x ∈ L}. The proof for filters is similar. ¤

3.2. Lemma. For every distributive lattice L, every I, J ∈ I(L) and every x, y ∈
L, the following equalities hold:

xI ∧ yJ = (x ∧ y)I∧J , xI ∨ xJ = xI∨J , xI ∨ yI = (x ∨ y)I .

Proof. I. Clearly, x ∧ y ≥ xI ∧ yJ ∈ I ∧ J . Further, if t ∈ (I ∧ J)∩ ↓ (x ∧ y), then
x ≥ t ∈ I and y ≥ t ∈ J . Hence, t ≤ xI and t ≤ yJ and therefore t ≤ xI ∧ yJ .

II. Clearly, xI ∨xJ ∈ (I∨J)∩ ↓x. Further, if t is any element of (I∨J)∩ ↓x then
t ≤ t1 ∨ t2 for some t1 ∈ I, t2 ∈ J and hence t ≤ x∧ (t1 ∨ t2) = (x∧ t1)∨ (x∧ t2) ≤
xI ∨ xJ .

III. Clearly, xI ∨ yI ∈ I∩ ↓ (x ∨ y). Further, if t is any element of I∩ ↓ (x ∨ y)
then t = t ∧ (x ∨ y) = (t ∧ x) ∨ (t ∧ y) ≤ xI ∨ yI . ¤
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Now we are going to prove that every isotone compatible function on L can
be extended to an isotone compatible function on I(L). So, let us assume that
f : Ln −→ L is compatible. We wish to extend it to a function f : I(L)n −→ I(L).
Let I1, . . . , In ∈ I(L). For any M ⊆ {1, . . . , n} we set

I(M) =
{

y ∈ L | y ≤ f(x1, . . . , xn) ∨
∨

i∈M

xi for some x1, . . . , xn ∈ L such

that xi ∈ Ii for all i ∈M
}

.

3.3. Lemma. I(M) is an almost principal ideal in L.

Proof. We prove that, for every y ∈ L,

yI(M) =
∨

i∈M

yIi
∨ (f(z1, . . . , zn) ∧ y),

where

zi =

{

y if i /∈M,

yIi
if i ∈M.

It is clear that such yI(M) belongs to I(M) and yI(M) ≤ y. We need to show that
yI(M) is the greatest element of L having these properties.

So, let u ∈ I(M), u ≤ y. Hence,

u ≤
∨

i∈M

xi ∨ f(x1, . . . , xn)

for suitable x1, . . . , xn ∈ L such that xi ∈ Ii whenever i ∈M . Then

u ≤
∨

i∈M

(xi ∧ y) ∨ (f(x1, . . . , xn) ∧ y).

Obviously, for i ∈ M we have xi ∧ y ≤ yIi
≤ yI(M). It remains to show that

f(x1, . . . , xn) ∧ y ≤ yI(M). According to 2.4, f(t1, . . . , tn) ≥ f(x1, . . . , xn) ∧ y,
where

ti =

{

y if i /∈M,

xi if i ∈M.

Hence, f(x1, . . . , xn) ∧ y ≤ f(t1, . . . , tn) ∧ y and, by 2.4 again, f(t1, . . . , tn) ≤
f(z1, . . . , zn) ∨

∨

i∈M xi. We obtain that

f(x1, . . . , xn) ∧ y ≤
(

f(z1, . . . , zn) ∨
∨

i∈M

xi

)

∧ y

≤
(

f(z1, . . . , zn) ∧ y
)

∨
∨

i∈M

yIi
= yI(M).

Thus, we have proved that I(M)∩ ↓y is a principal ideal for every y ∈ L. This im-
plies that I(M) is closed under joins. Hence, I(M) is an almost principal ideal. ¤

Let us define

f(I1, . . . , In) =
⋂

{

I(M) | M ⊆ {1, . . . , n}
}

.

Since all I(M)’s are almost principal ideals, f(I1, . . . , In) is an almost principal
ideal too. Hence, we have defined a function

f : I(L)n −→ I(L).

It is clear that f is isotone.
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3.4. Lemma. f is a compatible function on I(L).

Proof. Let θ be a congruence on I(L), let I1, . . . , In, J1, . . . , Jn ∈ I(L) and (I1, J1) ∈
θ, . . . , (In, Jn) ∈ θ. We have to prove that (f(I1, . . . , In), f(J1, . . . , Jn)) ∈ θ. We
can restrict ourselves to the case I1 ⊆ J1, . . . , In ⊆ Jn. (Indeed, we could consider
the ideals Ki = Ii ∩ Ji and prove that (f(K1, . . . ,Kn), f(I1, . . . , In)) ∈ θ and
(f(K1, . . . ,Kn), f(J1, . . . , Jn)) ∈ θ.

Let I(M), M ⊆ {1, . . . , n} be the ideals defined above for I1, . . . , In. Let J(M)
be similar ideals, defined by using J1, . . . , Jn instead of I1, . . . , In. We claim that

J(M) = I(M) ∨
∨

i∈M

Ji.

Obviously, I(M) ⊆ J(M) and also
∨

i∈M Ji ⊆ J(M). To prove the other inclusion,
let t ∈ J(M), hence

t ≤ f(x1, . . . , xn) ∨
∨

i∈M

xi,

where x1, . . . , xn ∈ L are such that xi ∈ Ji whenever i ∈ M . Choose arbitrary
elements yi ∈ Ii (i ∈ M). By 2.4, f(x1, . . . , xn) ≤ f(y1, . . . , yn) ∨

∨

i∈M xi, where
yi = xi for i /∈M . Hence,

t ≤ f(y1, . . . , yn) ∨
∨

i∈M

xi.

Since
f(y1, . . . , yn) ≤ f(y1, . . . , yn) ∨

∨

i∈M

yi ∈ I(M)

and
∨

i∈M

xi ∈
∨

i∈M

Ji,

we obtain that t ∈ I(M) ∨
∨

i∈M Ji.
Thus, we have J(M) = I(M) ∨

∨

i∈M Ji. Since (Ii, Ji) ∈ θ for every i, we have

(I(M), J(M)) = (I(M) ∨
∨

i∈M

Ii, I(M) ∨
∨

i∈M

Ji) ∈ θ,

which implies that

(f(I1, . . . , In), f(J1, . . . , Jn)) = (
∧

M⊆n

I(M),
∧

M⊆n

J(M)) ∈ θ.

(Here and in the sequel n stands for {1, . . . , n}.) ¤

3.5. Lemma. For every x1, . . . , xn ∈ L, the following holds:

f(↓x1, . . . , ↓xn) =↓f(x1, . . . , xn).

(In other words: f can be regarded as an extension of f .)
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Proof. Obviously, f(x1, . . . , xn) ∈ I(M) for every M ⊆ {1, . . . , n}, hence
↓f(x1, . . . , xn) ⊆ f(↓x1, . . . , ↓xn). (It is understood that, in the definition of I(M),
the ideals ↓x1, . . . , ↓xn play the role of I1, . . . , In.)

Suppose now that y ∈
⋂

M⊆n I(M) = f(↓x1, . . . , ↓xn). We show that for every

M ⊆ {1, . . . , n} there exist y1, . . . , yn ∈ L such that y ≤ f(y1, . . . , yn) and yi = xi

for every i ∈M .
We proceed by induction on the cardinality of M . Since y ∈ I(∅), we have

y ≤ f(y1, . . . , yn) for some y1, . . . , yn ∈ L, which means that the assertion holds for
|M | = 0.

Suppose now that |M | > 0. From y ∈ I(M) we get that

y ≤ f(z1, . . . , zn) ∨
∨

i∈M

zi,

where zi ≤ xi for every i ∈M . For every k ∈M we consider the setMk =M \{k}.
By the induction hypothesis forMk we have y ≤ f(yk

1 , . . . , y
k
n), where y

k
1 , . . . , y

k
n ∈ L

are such that yk
i = xi whenever i ∈Mk. Let us denote

w =
∧

k∈M

f(yk
1 , . . . , y

k
n).

Further, let t1, . . . , tn ∈ L be defined by the rule

ti =

{

xi if i ∈M,

zi ∨
∨

k∈M yk
i if i /∈M.

By 2.4 and the isotonicity of f , for every k ∈M we get
zk ∧ w ≤ zk ∧ f(y

k
1 , . . . , y

k
n) ≤ f(yk

1 , . . . , y
k
k−1, zk, y

k
k+1, . . . , y

k
n) ≤ f(t1, . . . , tn) and

also f(z1, . . . , zn) ≤ f(t1, . . . , tn). Since y ≤ w, we obtain

y ≤ (f(z1, . . . , zn)∨
∨

k∈M

zk)∧w = (f(z1, . . . , zn)∧w)∨
∨

k∈M

(zk∧w) ≤ f(t1, . . . , tn).

This completes the induction. If we set M = {1, . . . , n}, we obtain that y ≤
f(x1, . . . , xn), which was to prove. ¤

Of course, assertions analogous to 3.3–3.5 hold also for almost principal filters.
Having this in mind, we can prove the main theorem of this section.

3.6. Theorem. Let L be a distributive lattice. For a function f : Ln −→ L, the
following statements are equivalent:

(1) f is isotone and compatible;
(2) f can be interpolated by a polynomial of F(I(L)).

Proof. Obviously, every function on L that can be interpolated by a polynomial
of F(I(L)) is isotone and compatible. (Distributive lattices have the Congru-
ence extension property.) Conversely, let f : Ln −→ L be an isotone compati-
ble function. By 3.4 and 3.5 we can extend it to an isotone compatible function
f : F(I(L))n −→ F(I(L)). The lattice F(I(L)) is bounded. By 2.1, f is a polyno-
mial function of F(I(L)), which is the desired interpolation of f . ¤

If L does not contain a nontrivial Boolean interval, then every compatible func-
tion on L is isotone and hence can be interpolated by a polynomial of F(I(L)).
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3.7. Theorem. Suppose that a distributive lattice L does not contain a nontrivial
Boolean interval. Then L is affine complete in F(I(L)). ¤

Let us remark that if L does not contain a nontrivial Boolean interval, then
F(I(L)) itself is affine complete. Indeed, it is bounded and the following assertion
holds.

3.8. Lemma. If L does not contain a nontrivial Boolean interval, then I(L) and
F(L) do not contain such interval either.

Proof. Let [I, J ] be a Boolean interval in I(L), I ( J . Let us choose x ∈ J \ I.
Consider the interval [↓ x ∩ I, ↓ x]. This interval is isomorphic to the nontrivial
Boolean interval [I, ↓ x ∨ I]. On the other hand, by 3.1 it is isomorphic to the
interval [xI , x] of the lattice L. Hence, L contains a nontrivial Boolean interval. ¤

Hence, we can regard F(I(L)) as an ”affine completion” of L. Because of the
symmetry, I(F(L)) is another affine completion. Rest of this section is devoted to
the proof that these two completions are canonically isomorphic.

So, let L be a distributive lattice. If U ∈ F(I(L)), (i.e. U is a family of almost
principal ideals that forms an almost principal filter in I(L)) and F ∈ F(L), then
we denote by F (U) the filter in L generated by the set {xI | x ∈ F, I ∈ U}. Since
the set {xI | x ∈ F, I ∈ U} is (by 3.2) closed under meets, we have

F (U) = {t ∈ L | t ≥ xI for some x ∈ F, I ∈ U}.

3.9. Lemma. F (U) ∈ F(L).

Proof. Since U is almost principal, for every x ∈ L there exists an ideal (↓x)U ∈ U .
We claim that xF (U) = (xF )J , where J = (↓x)U .

Since ↓ x ⊆ J , we have x ∈ J . Since x ≤ xF , it follows that x ≤ (xF )J . From
the definition we have (xF )J ∈ F (U).

It remains to show that (xF )J is the least element in ↑x ∩ F (U). Let y ∈ F (U),
x ≤ y. Then y ≥ zI for some z ∈ F , I ∈ U . Obviously, J ⊆ I∨ ↓x, hence
(xF )J ≤ (xF )I∨↓x = (xF )I ∨ (xF )↓x = (xF )I ∨ x.
Further xF ≤ z ∨ x, hence (xF )I ≤ (z ∨ x)I = zI ∨ xI . We obtain that (xF )J ≤
zI ∨ xI ∨ x = zI ∨ x ≤ y. ¤

Let us denote

ϕ(U) = {F ∈ F(L) | F ∩ I 6= ∅ for every I ∈ U}.

3.10. Lemma. ϕ(U) is an almost principal ideal in F(L).

Proof. It is easy to see that ϕ(U) is an ideal in F(L). (Recall that F(L) is ordered
by the inverse inclusion.) Let F ∈ F(L). We claim that Fϕ(U) = F (U).

Let I ∈ U . Choose x ∈ F arbitrarily. Then xI ∈ F (U)∩ I. We have proved that
F (U) ∈ ϕ(U).

Let x ∈ F . Choose I ∈ U arbitrarily. Then x ≥ xI ∈ F (U), hence x ∈ F (U).
We have proved that F ⊆ F (U).

Now, let F ⊆ G ∈ ϕ(U). We need to show that F (U) ⊆ G. It suffices to prove
that xI ∈ G for every x ∈ F , I ∈ U . Since x ∈ F , obviously x ∈ G. Since G ∈ ϕ(U),
there exists z ∈ G∩ I. Then x∧z ∈ G and since x∧z ≤ xI , we obtain that xI ∈ G.
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3.11. Theorem. The lattices F(I(L)) and I(F(L)) are isomorphic for every dis-
tributive lattice L.

Proof. Let ϕ : F(I(L)) −→ I(F(L)) be the mapping defined in 3.10. Similarly we
define ψ : I(F(L)) −→ F(I(L)) by

ψ(K) = {I ∈ I(L) | I ∩ F 6= ∅ for every F ∈ K}.

It is clear that both ϕ and ψ are order-preserving. It remains to prove that they are
inverse to each other. Because of the symmetry, it suffices to show that ψ(ϕ(U)) = U
for every U ∈ F(I(L)).

It is obvious that U ⊆ ψ(ϕ(U)). Conversely, suppose that an almost principal
ideal I has a nonempty intersection with every F ∈ ϕ(U). For contradiction,
suppose that I /∈ U . Then I ( IU and we can choose x ∈ IU \ I. For the filter
G =↑x consider the filter G(U) generated by {xK | K ∈ U}. By 3.9, G(U) ∈ ϕ(U),
hence G(U) ∩ I 6= ∅. It follows that xJ ∈ I for some J ∈ U . Clearly, IU ⊆ I ∨ J ,
hence x ∈ I ∨ J , which implies that x = xI∨J = xI ∨ xJ . Since xJ ∈ I, we have
xJ ≤ xI , hence x = xI , which means that x ∈ I, a contradiction. ¤

We close this section with some examples.

(1) If L is a bounded distributive lattice then L ∼= F(I(L)).

(2) If L is an affine complete distributive lattice withou the least and the greatest
element, then F(I(L)) ∼= L ∪ {0, 1}.

(3) Let L be the ”open square” lattice

L = {(x, y) ∈ R2 | 0 < x < 1, 0 < y < 1},

where R is the chain of reals. Then, up to isomorphism,

F(I(L)) = {(x, y) ∈ R2 | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.

(4) Let L be the set of all sequences of real numbers, which contain only finitely
many nonzero members. This set, under the pointwise ordering, is a distributive
lattice. Then, up to isomorphism, I(L) is the set of all sequences of R ∪ {∞} with
only finitely many negative members. Every such sequence represents the ideal of
all elements of L that lie below it. Similarly, F(I(L)) is the set of all sequences of
R ∪ {∞,−∞}.

4. Other affine completions

In this section we investigate general conditions characterizing the situation when
a distributive lattice L is affine complete in a distributive lattice M . Our basic
technique lies in analyzing binary compatible functions.

First, one denotation. If f : L −→ L is any function on a distributive lattice L,
then I(f) = {x ∈ L | x ≤ f(y) for some y ∈ L}.

In the next assertion we use the fact that every unary isotone compatible function
f : L −→ L is a lattice endomorphism. Indeed, any such function is representable
by some unary polynomial of F(I(L)) and it is easy to see that unary polynomials
are endomorphisms.
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4.1. Lemma. Let f : L2 −→ L be an isotone compatible function on a distributive
lattice L. For every x ∈ L we define a unary function fx : L −→ L by fx(y) =
f(x, y). Then

(i) I(fx∧y) = I(fx) ∩ I(fy) for every x, y ∈ L;
(ii) the family {I(fx) | x ∈ L} generates an almost principal filter in I(L).

Proof. We know from 2.2(ii) that I(fx) ∈ I(L). Denote by U the filter in I(L)
generated by {I(fx) | x ∈ L}.

(i) The inclusion I(fx∧y) ⊆ I(fx)∩ I(fy) follows from the isotonicity of f . Con-
versely, suppose that t ≤ f(x, u) and t ≤ f(y, v) for some t, u, v ∈ L. Define a
compatible function g : L −→ L by g(z) = f(z, u ∨ v). Since unary compati-
ble functions are lattice homomorphisms, we obtain that t ≤ f(x, u) ∧ f(y, v) ≤
g(x) ∧ g(y) = g(x ∧ y) = f(x ∧ y, u ∨ v), hence t ∈ I(fx∧y).

(ii) Because of (i), for any J ∈ I(L) we have

J ∈ U iff J ⊇ I(fx) for some x ∈ L.

To prove that U is almost principal, consider arbitrary I ∈ I(L). Choose x ∈ I
arbitrarily. We claim that IU = I ∨ I(fx). Obviously, I ⊆ I ∨ I(fx) ∈ U . Now, let
J ∈ U , I ⊆ J . Thus, I(fu) ⊆ J for some u ∈ L. By 2.4, f(x, z) ≤ x ∨ f(u, z) for
every z ∈ L. Since x ∈ I ⊆ J and f(u, z) ∈ I(fu) ⊆ J , we have f(x, z) ∈ J . This
shows that I(fx) ⊆ J , hence I ∨ I(fx) ⊆ J . ¤

Now we formulate ”the condition of substitutes”. Let L be a sublattice of a
distributive lattice M .

For every U ∈ F(I(L)), U 6= {L}, I(L), there exists c ∈M such that

(CS)

yI = y ∧ (c ∨ x) for every x, y ∈ L, where I = (↓x)U .

4.2. Theorem. Suppose that every binary isotone compatible function on L can
be interpolated by a polynomial of M . Then (CS) holds.

Proof. Consider the function

f(x, y) = yI , where I = (↓x)U .

This function is isotone and compatible, because it is representable by a polynomial
of F(I(L)) (under the canonical embedding L −→ F(I(L))), namely f(x, y) =
y ∧ (U ∨ x).

By our assumption, f is representable by a polynomial of M . Let M be the
lattice which arises from M by adding a new 0 and 1. (If M possesses the greatest
and the least element, this step is not necessary.) Hence, f can be expressed in the
canonical form

f(x, y) = a ∧ (b ∨ y) ∧ (c ∨ x) ∧ (d ∨ x ∨ y),

where a, b, c, d ∈M , a ≥ b ≥ d, a ≥ c ≥ d.
It is easy to see that if y ≤ x then y ∈ ↓ x ⊆ (↓ x)U , hence f(x, y) = y. In

particular, f(x, x) = x for every x ∈ L. Clearly, x = f(x, x) = a ∧ (d ∨ x). Thus,
a ≥ x ≥ d for every x ∈ L. Then d ∨ x ∨ y = x ∨ y, a ≥ x ∨ y and we have

f(x, y) = (b ∨ y) ∧ (c ∨ x) ∧ (x ∨ y).
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Since y ≤ x∨y, we have y = f(x∨y, y) = (b∨y)∧(c∨x∨y)∧(x∨y∨y) = (b∨y)∧(x∨y),
hence f(x, y) = y ∧ (c ∨ x). It remains to show that c ∈M (i.e. c 6= 0, 1).

Suppose that c = 0. Then f(x, y) = x ∧ y. We claim that ↓ x ∈ U for every
x ∈ L. Indeed, y ∈ (↓x)U = I implies that y = yI = f(x, y) = x ∧ y, hence y ≤ x,
which shows that (↓ x)U =↓ x and therefore ↓ x ∈ U . Thus, U = I(L), which is
excluded.

Suppose that c = 1. Then f(x, y) = y for every x, y ∈ L. This is only possible
if (↓x)U = L for every x ∈ L. Thus, if I ∈ U then choosing an arbitrary x ∈ I we
find that L = (↓x)U ⊆ I, hence I = L. We have shown that U = {L}, which is an
excluded case too. ¤

Now we are going to prove the converse. In the sequel we keep the following
assumptions:

(1) L is a sublattice of a distributive lattice M ;
(2) the condition (CS) is satisfied;
(3) f : Ln −→ L is an isotone compatible function (n ≥ 1).

Our aim is to represent f by a polynomial of M . Without loss of generality we
can assume that M contains 0 and 1. (If a polynomial contains 0 or 1, then it
always can be simplified so that these constants disappear.)

For every S ⊆ n = {1, . . . , n} we define a binary function fS : L2 −→ L by

fS(x, y) = f(x1, . . . , xn), where

xi =

{

y if i ∈ S;

x if i /∈ S.

Obviously, each fS is a compatible function. For every x ∈ L we define an unary
function fS

x by fS
x (y) = fS(x, y). By 4.1, the family {I(fS

x ) | x ∈ L} generates some
U ∈ F(I(L)). (Of course, U depends on S.) According to (CS), there is aS ∈ M
such that y ∧ (x ∨ aS) = yI for every x, y ∈ L, I = (↓ x)U . (If the case U = I(L)
or U = {L} occurs, then (CS) does not apply, but the constants aS = 0 or aS = 1
have the required property.)

In general, the condition (CS) does not determine the elements aS uniquely. We
shall need a special choice of those elements, which is ensured by the following
lemma.

4.3. Lemma. The elements aS, S ⊆ n, can be chosen in such a way that

(1) aS ≤ aT whenever S ⊆ T ;
(2) a∅ ≤ f(x1, . . . , xn) ≤ an for every x1, . . . , xn ∈ L.

Proof. Let aS , S ⊆ n be arbitrary elements of M satisfying the condition that
yI = y ∧ (x ∨ aS) for every x, y ∈ L, I = (↓x)S , where the filter S is generated by
the family {I(fS

u ) | u ∈ L}.
I. If (1) is not fulfilled, we set bT =

∧

S⊇T aS for every T ⊆ n. The elements bT
clearly satisfy (1) and it suffices to show that y ∧ (x ∨ aT ) = y ∧ (x ∨ bT ) for every
x, y ∈ L, T ⊆ n.

Consider arbitrary S ⊇ T . Let S be as above and let T ∈ F(I(L)) be generated
by the family {I(fT

u ) | u ∈ L}. For every v ∈ L we have fS
u (u ∨ v) ≥ fT

u (v),
because f is isotone. Hence, I(fS

u ) ⊇ I(fT
u ), and consequently, S ⊆ T . Then

for I = (↓ x)S , J = (↓ x)T we have I ⊇ J and hence yI ≥ yJ , or equivalently,
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y ∧ (x ∨ aS) ≥ y ∧ (x ∨ aT ). Further,
y ∧ (x ∨ bT ) = y ∧ (x ∨

∧

S⊇T aS) =
∧

S⊇T (y ∧ (x ∨ aS)) = y ∧ (x ∨ aT ).

II. We denote f(Ln) = {f(x1, . . . , xn) | x1, . . . , xn ∈ L}. Clearly, f∅u is for
every u ∈ L a constant function equal to f(u, . . . , u). Thus, if S = ∅, then the
corresponding filter S is
S = {I ∈ I(L) | f(u, . . . , u) ∈ I for some u ∈ L}, or equivalently
S = {I ∈ I(L) | I ∩ f(Ln) 6= ∅}. (Indeed, if f(u1, . . . , un) ∈ I then f(u, . . . , u) ∈ I,
where u =

∧n
i=1 ui.)

We claim that, for any t ∈ L, t ∧ a∅ is a lower bound of f(Ln). Indeed, if
w ∈ f(Ln) then ↓ w ∈ S, hence (↓ w)S =↓ w and therefore w ≥ t ∧ w = t↓w =
t ∧ (w ∨ a∅) ≥ t ∧ a∅.

Choose t ∈ f(Ln) arbitrarily and set b∅ = t∧a∅. Then clearly b∅ ≤ f(x1, . . . , xn)
for every x1, . . . , xn ∈ L. It remains to prove that y ∧ (x ∨ a∅) = y ∧ (x ∨ b∅) for
every x, y ∈ L. Since y∧a∅ is a lower bound of f(Ln), we have y∧a∅ ≤ t and hence
y∧(x∨a∅) = (y∧x)∨(y∧a∅) = (y∧x)∨(y∧a∅∧t) = y∧(x∨(a∅∧t)) = y∧(x∨b∅).

III. Clearly, f
n
u (y) = f(y, . . . , y) for every u, y ∈ L, i.e. the function f

n
u does not

depend on u. If S = n then the corresponding filter is S = {I ∈ I(L) | I(f
n
u ) ⊆

I} = {I ∈ I(L) | f(Ln) ⊆ I}.
We claim that, for every t ∈ L, t ∨ an is an upper bound of f(Ln). Indeed, if

w ∈ f(Ln) then w ∈ I = (↓ t)S ⊇ f(Ln), hence w = wI = w ∧ (t ∨ an) ≤ t ∨ an.
Choose t ∈ f(Ln) arbitrarily and set bn = t ∨ an. It remains to show that

y ∧ (x ∨ an) = y ∧ (x ∨ bn) for every x, y ∈ L. Since x ∨ an is an upper bound of
f(Ln), we have t ≤ x∨an and therefore y∧ (x∨an) = y∧ (x∨an∨ t) = y∧ (x∨ bn).

4.4. Lemma. For every ∅ 6= S ( n and every x1, . . . , xn ∈ L the following holds
true:

aS ∧
∧

i∈S

xi ≤ f(x1, . . . , xn) ≤ aS ∨
∨

i/∈S

xi.

Proof. Denote by S the filter in I(L) generated by the family {I(fS
u ) | u ∈ L}.

I. Consider the ideal K = I(fS
x ), where x =

∧

i/∈S xi. Let y =
∧

i∈S xi. Clearly,

yK ≤ fS(x, u) for some u ∈ L. ¿From 2.4 and the isotonicity of f we infer that
yK ≤ y ∧ fS(x, u) ≤ f(x1, . . . , xn). Choose arbitrary t ∈ K. Then K ⊇ I = (↓ t)S ,
because ↓ t ⊆ K ∈ S. By the definition of aS we have f(x1, . . . , xn) ≥ yK ≥ yI =
y ∧ (t ∨ aS) ≥ y ∧ aS .

II. Denote w =
∨

i∈S xi, z =
∨

i/∈S xi. Consider the ideal J = (↓ z)S . Clearly,

J ⊇ I(fS
u ) for some u ∈ L, hence fS(u,w) ∈ J and (fS(u,w))J = fS(u,w). By 2.4

and the isotonicity of f we have f(x1, . . . , xn) ≤ fS(u,w) ∨ z = (fS(u,w))J ∨ z =
(fS(u,w) ∧ (z ∨ aS)) ∨ z ≤ z ∨ aS . ¤

¿From 4.4 and 4.3(ii) we deduce that

∨

S⊆n

(

aS ∧
∧

i∈S

xi

)

≤ f(x1, . . . , xn) ≤
∧

S⊆n

(

aS ∨
∨

i/∈S

xi

)

.

It is not difficult to see that, due to distributivity and 4.3(i),

∨

S⊆n

(

aS ∧
∧

i∈S

xi

)

=
∧

S⊆n

(

aS ∨
∨

i/∈S

xi

)

.
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(It can be proved by induction on n.) Hence,

f(x1, . . . , xn) =
∨

S⊆n

(

aS ∧
∧

i∈S

xi

)

,

which means that we have represented f by a polynomial of M . As a consequence
we have obtained the main results of this section.

4.5. Theorem. Let L be a sublattice of a distributive lattice M . The following
statements are equivalent:

(1) L and M satisfy (CS);
(2) every isotone compatible binary function on L can be interpolated by a poly-

nomial of M .
(3) every isotone compatible function on L can be interpolated by a polynomial

of M .

¤

4.6. Theorem. Let L be a sublattice of a distributive lattice M . Suppose that
L does not contain a nontrivial Boolean interval. The following statements are
equivalent:

(1) L is affine complete in M ;
(2) L and M satisfy (CS);
(3) every compatible binary function on L can be interpolated by a polynomial

of M .

¤

The condition (CS) says thatM in some sense contains the canonical completion
F(I(L)). Every element of F(I(L)) (possibly except the greatest and the least
element) has some ”substitute” in M . However, we cannot claim that F(I(L)) is a
sublattice of M , which is shown by the following example.

Let L = {(x, y) ∈ R2 | 0 < x < 1, 0 < y < 1} be the open square lattice,
which was discussed at the end of the previous chapter. Let M be the sublattice of
R2 × {0, 1} given by

M = {(x, y, 0) | 0 ≤ x < 1, 0 ≤ y < 1} ∪ {(x, y, 1) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.

We can regard L as a sublattice of M , identifying (x, y) ∈ L with (x, y, 0) ∈ M .
Then (CS) is satisfied, i.e. L is affine complete in M . However, there is no lattice
embedding F(I(L)) −→M that preserves the elements of L.

The above lattice L also provides a counterexample to other conjectures.
In [4], an I-polynomial of a distributive lattice L is defined as a function on

L that can be interpolated by a polynomial of the ideal lattice I(L). Similarly,
D-polynomials are functions representable by polynomials of the filter (dual ideal)
lattice F (L). The conjecture in [4] says that every isotone compatible function is
an ID-polynomial (a composition of I-polynomials and D-polynomials). In fact, it
is not difficult to prove that every I-polynomial (D-polynomial) is representable by
a polynomial of I(L) (of F(L)). Now, consider the open square lattice L embedded
in the lattice

Q = {(x, y) ∈ R2 | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} \ {(0, 1)}.
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Then both
I(L) = {(x, y) ∈ R2 | 0 < x ≤ 1, 0 < y ≤ 1}

and F(L) are embeddable in Q, which means that every ID-polynomial can be
interpolated by a polynomial of Q. However, L is not affine complete in Q and the
function

f(x, y) = y ∧ (x ∨ (0, 1))

is isotone compatible on L and cannot be represented by a polynomial of Q. This
contradicts the conjecture in [4].

The above example also shows that in 4.5 and 4.6 unary compatible functions
cannot be used instead of binary ones. Indeed, every unary compatible function on
L is an ID-polynomial ([4]) and hence representable by a polynomial of Q.
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