ON A CHARACTERIZATION OF DISTRIBUTIVE LATTICES BY THE BETWEENNESS RELATION

Miroslav PloščICA

Abstract

We construct an example of a ternary structure satisfying certain conditions due to M. Kolibiar, which is not a betweenness relation of any lattice. This answers a question posed by J. Hedlíkova and T. Katriňák.

1. Introduction.

Having a lattice L, one can define a ternary relation R on L as follows:

$$
(a, b, c) \in R \quad \text { iff } \quad(a \wedge b) \vee(b \wedge c)=b=(a \vee b) \wedge(b \vee c)
$$

We refer to this relation as to the (ternary) betweenness relation on L.
G. Birkhoff and S. A. Kiss in their pioneering paper [2] characterized distributive lattices with universal bounds in terms of a median operator m. In the early fifties, several papers of Sholander were devoted to medians and betweenness relations. The connection between the two subjects is

$$
(a, b, c) \in R \quad \text { iff } \quad m(a, b, c)=b
$$

This has lead to the introduction of so-called median algebras; in combination with the Birkhoff-Kiss results it has lead to a characterization of distributive lattices with universal bounds in terms of betweenness.

What makes things more difficult is the lack of universal bounds. M. Kolibiar [5] characterized abstractly the betweenness relation on (in general unbounded) lattices. He proved that a ternary relation R on a set L is a betweenness relation of some distributive lattice defined on L if and only if the relation R satisfies conditions (A), (B), (C), (D) and (F) given below. The condition (F) was especially designed to handle the case of unbounded lattices.
J. Hedlíková and T. Katriňák [3] proved that the conditions (A), (B), (C), (D) and (F) are independent. In the same paper they posed a question of whether the condition (F) can be replaced by an another condition $\left(\mathrm{F}_{1}\right)$ (see below). The condition (F_{1}) has

[^0]the advantage that it is a first-order property, while (F) is not. (The conditions (A), (B), (C) and (D) are first-order properties.) This question is thus connected with the problem of whether the ternary betweeness relation on (distributive) lattices is first-order axiomatizable.

Lattice betweenness is closely connected with median algebras. A recent paper [1] contains several "axiom systems" of betweenness induced by a median operator. By [1, Prop.1.5+Thm.4.6], median betweenness is characterized by the conditions (B), (C), (D) and
(A^{\prime}) Every element a belongs to the segment $\langle a, a\rangle$.
(See below for the definition of a segment.) It is not difficult to see that (A^{\prime}) can be replaced by the condition
($\mathrm{A}^{\prime \prime}$) Every element a belongs to some segment.
Replacing ($\mathrm{A}^{\prime \prime}$) by (A) means requiring that every three points of a median algebra are included in a segment. In fact, (A) and (D) imply that each finite subset of a median algebra is included in a segment. Each segment of a median algebra is a distributive lattice (with universal bounds). An example in [3] shows however, that the conditions (A), (B), (C), (D) are not strong enough to characterize lattice betweenness.

In this paper we construct an example of a structure that satisfies (A), (B), (C), (D) and $\left(\mathrm{F}_{1}\right)$ but not (F). Hence, even the axiom system (A), (B), (C), (D), (F_{1}) is not sufficient to characterize lattice betweenness.

Let R be a ternary relation on a set M. For any elements $a, c \in M$ we denote $\langle a, c\rangle=\{b \in M \mid(a, b, c) \in R\}$. Any set of the form $\langle a, c\rangle$ is called a segment on M. If G is a segment, then we define $\operatorname{Fund}(G)=\{(a, c) \in M \times M \mid\langle a, c\rangle=G\}$. Now we can formulate the conditions mentioned above. Because of the presence of the condition (D), we use (A), (B), (C), (F) and $\left(\mathrm{F}_{1}\right)$ in a slightly simpler form than in [3]:
(A) For any $a, b, c \in M$ there are $d, e \in M$ such that $\{a, b, c\} \subseteq\langle d, e\rangle$.
(B) For any $a, b, c \in M,\langle a, b\rangle \cap\langle a, c\rangle \cap\langle b, c\rangle \neq \emptyset$
(C) If $a, b, c \in M$, then $(a, b, c) \in R$ iff $\langle a, b\rangle \cap\langle c, b\rangle=\{b\}$.
(D) For any $a, b, c, d \in M$, if $\{a, b\} \subseteq\langle c, d\rangle$, then $\langle a, b\rangle \subseteq\langle c, d\rangle$.
(F) There exists a map assigning to every segment J a pair $\left(a_{J}, b_{J}\right) \in \operatorname{Fund}(J)$ such that for all segments G, H the following holds:

$$
\text { if } \quad G \subseteq H, \quad \text { then } \quad\left(a_{H}, a_{G}, b_{G}\right) \in R
$$

$\left(\mathrm{F}_{1}\right)$ For every segment G there exists $(a, b) \in \operatorname{Fund}(G)$ such that for every segment H satisfying $G \subseteq H$ there exists $(c, d) \in \operatorname{Fund}(H)$ with $(c, a, b) \in R$.
We will need some elementary facts about betweenness relations on lattices. (See [5].) If $L^{o p}$ is the dual lattice of a lattice L (i. e. L and $L^{o p}$ have the same elements and $x \leq y$ holds in $L^{o p}$ iff $y \leq x$ holds in L), then the betweenness relations on L and $L^{o p}$ coincide. If R is the betweenness relation of a direct product $L_{1} \times L_{2}$ of lattices L_{1} and
L_{2} (having R_{1} and R_{2} as the betweenness relations), then $((x, y),(z, t),(u, v)) \in R$ iff $(x, z, u) \in R_{1}$ and $(y, t, v) \in R_{2}$. If R is the betweenness relation of a distributive lattice, then $(a, b, c) \in R$ iff $a \wedge c \leq b \leq a \vee c$.

By a ternary structure we mean a set endowed with a ternary relation.
1.1. Lemma. Let $M_{i}(i=0,1,2, \ldots)$ be ternary structures satisfying the conditions (A), (B), (C), (D). Suppose that M_{i} is a substructure of M_{j} whenever $i \leq j$. Then the ternary structure $M=\bigcup_{i=0}^{\infty} M_{i}$ satisfies (A), (B), (C), (D), too.

Proof. Each of the conditions (A), (B), (C) and (D) concerns only a finite number of elements. Their validity in M can be proved by considering M_{i} containing all the elements involved.

2. Construction.

Let C_{n} denote the n-element chain $0<1<\cdots<n-1$ viewed as a lattice. Let

$$
K_{n}=\left\{\left(x_{0}, \ldots, x_{n}\right\} \in C_{2} \times\left(C_{3}\right)^{n} \mid x_{0}=0 \text { implies }\left\{x_{1}, \ldots, x_{n}\right\} \subseteq\{0,1\}\right\} .
$$

It is easy to see that K_{n} is a sublattice of the (distributive) lattice $C_{2} \times\left(C_{3}\right)^{n}$. Further, for any $n \geq 0$ we denote

$$
L_{n}=C_{n+2} \times\left(K_{n}\right)^{n} .
$$

Hence, L_{n} too is a distributive lattice. We consider elements of L_{n} in the form (a, A), where $a \in C_{n+2}$ and A is a matrix with n rows and $n+1$ columns. (Each row represents an element of K_{n}.) We adopt the convention that entries of a matrix A are denoted by $a_{i j}$, entries of a matrix B by $b_{i j}$, etc. $(i \in\{1, \ldots n\}, j \in\{0, \ldots, n\})$.

For every $n \geq 0$ we define a mapping $f_{n}: L_{n} \longrightarrow L_{n+1}$ as follows. For every $x=(a, A) \in L_{n}$ we set $f_{n}(x)=(a, B)$, where the matrix B (an extension of A) is given by the following rules:
$b_{i j}=a_{i j}$ whenever $i \leq n, j \leq n$;
$b_{i, n+1}=0$ if $a \leq i$;
$b_{i, n+1}=1$ if $a>i$;
$b_{n+1, j}=0$ for every $j>0$;
$b_{n+1,0}=0$ if $a \neq 0$;
$b_{n+1,0}=1$ if $a=0$.
2.1. Lemma. For any natural numbers n and k with $n<k$ there exists a lattice $L_{k, n}$ such that the following conditions are satisfied:
(1) the lattices L_{k} and $L_{k, n}$ have the same elements;
(2) the betweenness relations of L_{k} and $L_{k, n}$ coincide;
(3) the mapping $f=f_{k-1} \circ f_{k-2} \circ \cdots \circ f_{n}$ is a lattice embedding $L_{n} \longrightarrow L_{k, n}$.

Proof. Let us set $L_{k, n}=C_{k+2} \times\left(K_{k}\right)^{n} \times\left(K_{k}^{o p}\right)^{k-n}$. Then (1) and (2) are evident, it remains to prove (3). The injectivity of f follows from the injectivity of f_{n}, \ldots, f_{k-1}.

Let $p_{0}: L_{k, n} \longrightarrow C_{k+2}, p_{1}: L_{k, n} \longrightarrow K_{k}, \ldots, p_{n}: L_{k, n} \longrightarrow K_{k}, \ldots, p_{k}: L_{k, n} \longrightarrow$ $K_{k}^{o p}$ be the natural projections. Since the operations in $L_{k, n}$ are pointwise, it suffices to show that $p_{j} \circ f$ is a lattice homomorphism for every $j=0,1, \ldots, k$. This is clear for $j=0$.

Suppose now that $0<j \leq n$. Let $x, y \in L_{n}, x=(a, A), y=(b, B)$. Then
$p_{j}(f(x))=\left(a_{j 0}, a_{j 1}, \ldots, a_{j n}, c, c, \ldots, c\right)$,
$p_{j}(f(y))=\left(b_{j 0}, b_{j 1}, \ldots, b_{j n}, d, d, \ldots, d\right)$,
where $c, d \in\{0,1\}$ are such that $c=0$ iff $a \leq j$ and $d=0$ iff $b \leq j$. Clearly, $c \vee d=0$ iff $\max \{a, b\} \leq j$ and $c \wedge d=0$ iff $\min \{a, b\} \leq j$. Hence, we have
$p_{j}(f(x)) \vee p_{j}(f(y))=\left(a_{j 0} \vee b_{j 0}, \ldots, a_{j n} \vee b_{j n}, c \vee d, \ldots, c \vee d\right)=p_{j}(f(x \vee y))$, $p_{j}(f(x)) \wedge p_{j}(f(y))=\left(a_{j 0} \wedge b_{j 0}, \ldots, a_{j n} \wedge b_{j n}, c \wedge d, \ldots, c \wedge d\right)=p_{j}(f(x \wedge y))$.

Finally, let $n<j \leq k$ and let $x, y \in L_{n}$ be as above. Then $p_{j}(f(x))=(p, 0,0, \ldots, 0)$, $p_{j}(f(y))=(q, 0,0, \ldots, 0), p_{j}(f(x \vee y))=(r, 0,0, \ldots, 0)$ and $p_{j}(f(x \wedge y))=(s, 0,0, \ldots, 0)$, where $p, q, r, s \in\{0,1\}$ are such that $p=0$ iff $a \neq 0, q=0$ iff $b \neq 0, r=0$ iff $\max \{a, b\} \neq 0$ and $s=0$ iff $\min \{a, b\} \neq 0$. Since $K_{k}^{o p}$ is dual to K_{k}, we have $p_{j}(f(x)) \wedge p_{j}(f(y))=(\max \{p, q\}, 0, \ldots, 0)=(s, 0, \ldots, 0)=p_{j}(f(x \wedge y))$ and $p_{j}(f(x)) \vee p_{j}(f(y))=(\min \{p, q\}, 0, \ldots, 0)=(r, 0, \ldots, 0)=p_{j}(f(x \vee y))$.

Let M_{n} be the ternary (betweenness) structure associated with the lattice L_{n}. (The ternary betweenness relation itself is denoted by R_{n}.) As a consequence of 2.1 we obtain that any $f_{k n}=f_{k-1} \circ \cdots \circ f_{n}$ is an embedding $M_{n} \longrightarrow M_{k}$. Let M be the ternary structure that is a limit of the directed system

$$
M_{0} \xrightarrow{f_{0}} M_{1} \xrightarrow{f_{1}} M_{2} \xrightarrow{f_{2}} \ldots
$$

Hence, elements of M are the equivalence classes of the equivalence relation \sim on $\bigcup_{i=0}^{\infty} M_{i}$ given by the following rule: $x \sim y$ holds for $x \in M_{i}, y \in M_{j}$ if and only if $f_{k i}(x)=f_{k j}(y)$ for some $k>i, j$. Let $[x]$ denote the equivalence class containing an element x. The ternary relation R on the set M is defined in a natural way: $([x],[y],[z]) \in R$ holds for $x \in M_{i}, y \in M_{j}, z \in M_{k}$ if and only if $\left(f_{n i}(x), f_{n j}(y), f_{n k}(z)\right) \in R_{n}$ holds for some (and hence for all) $n>i, j, k$. Up to isomorphism, we can assume that M is the union of the increasing chain

$$
M_{0} \subset M_{1} \subset \ldots
$$

of its substructures.
2.2. Lemma. The structure M satisfies $(A),(B),(C),(D)$ and $\left(F_{1}\right)$.

Proof. (A), (B), (C) and (D) are satisfied by 1.1. To prove (F_{1}), let $G=\langle[x],[y]\rangle$ be an arbitrary segment of M. We can suppose that $x, y \in M_{n}$ for some n. Let us set $a=x \wedge y, b=x \vee y$, where \wedge and \vee refer to the lattice L_{n}. It is clear that $([a],[b]) \in \operatorname{Fund}(G)$. Let $H=\langle[z],[t]\rangle$ be any segment with $G \subseteq H$. We can suppose that $z, t \in M_{k}$ for some $k>n$. Let us set $c=z \wedge t, d=z \vee t$, where \wedge and \vee refer to
the lattice $L_{k, n}$. Then $([c],[d]) \in \operatorname{Fund}(H)$ and we have to show that $([c],[a],[b]) \in R$, or equivalently, that $\left(c, f_{k n}(a), f_{k n}(b)\right) \in R_{k}$. Since $G \subseteq H$, we have $[a],[b] \in H$, which means that $c \leq f_{k n}(a) \leq d$ and $c \leq f_{k n}(b) \leq d$ are valid in $L_{k, n}$. Since $f_{k n}$ is a lattice homomorphism $L_{n} \longrightarrow L_{k, n}$, we obtain that $c \leq f_{k n}(a) \wedge f_{k n}(b)=f_{k n}(a \wedge b)=$ $f_{k n}(a) \leq f_{k n}(b)$ and therefore $\left(c, f_{k n}(a), f_{k n}(b)\right) \in R_{k}$.

Instead of proving that M does not satisfy (F) we will show that it does not satisfy even the following weaker condition:
$\left(\mathrm{F}_{2}\right)$ for every segment G there exists $(a, b) \in \operatorname{Fund}(G)$ such that for every segment $H \supseteq G$ there exists $(c, d) \in \operatorname{Fund}(H)$ such that for every segment $J \supseteq H$ there exists $(u, v) \in \operatorname{Fund}(J)$ with $(c, a, b) \in R$ and $(u, c, d) \in R$.
By [5] (assertion 4.3.6), if a ternary structure satisfies (A), (B) and (C) then $a \in$ $\langle c, b\rangle$ and $b \in\langle c, d\rangle$ imply $b \in\langle a, d\rangle$. Hence, in the presence of the conditions (A), (B), (C) we can add the relations $(a, b, d) \in R$ and $(c, d, v) \in R$ to the condition $\left(\mathrm{F}_{2}\right)$, making it symmetric.
2.3. Lemma. The structure M does not satisfy $\left(F_{2}\right)$.

Proof. By way of contradiction, suppose that $\left(\mathrm{F}_{2}\right)$ is fulfilled. Let us set $G=\langle[0],[1]\rangle$, where $0=(0, \emptyset)$ and $1=(1, \emptyset)$ are the only two elements of M_{0}. Let $[a],[b] \in M$ with the property according to $\left(\mathrm{F}_{2}\right)$. We can assume that $a, b \in M_{n}$ for some $n, a=(x, A)$, $b=(y, B)$. Since $([a],[b]) \in \operatorname{Fund}(G)$, we obtain that $f_{n 0}(0) \vee f_{n 0}(1)=a \vee b$ and $f_{n 0}(0) \wedge f_{n 0}(1)=a \wedge b$ hold in L_{n}, which implies that $x \vee y=1$ and $x \wedge y=0$. Without loss of generality, $x=0$ and $y=1$. Let $z=(0, Z)$ and $t=(n+2, T)$ be the least and the greatest element of L_{n+1}, respectively. Let us set $H=\langle[z],[t]\rangle$. Since $[a],[b] \in H$, we have $G \subseteq H$. Let $([c],[d]) \in \operatorname{Fund}(H)$ be according to $\left(\mathrm{F}_{2}\right)$. We can assume that $c, d \in M_{k}$ for some $k>n, c=\left(x^{\prime}, C\right), d=\left(y^{\prime}, D\right)$. Since $([c],[d]) \in \operatorname{Fund}(H)$, we obtain that $x^{\prime} \vee y^{\prime}=n+2$ and $x^{\prime} \wedge y^{\prime}=0$. Let $f_{k n}(a)=\left(0, A^{\prime}\right), f_{k n}(b)=\left(1, B^{\prime}\right)$ and denote by $a_{i j}^{\prime}, b_{i j}^{\prime}$ the entries of the matrices A^{\prime} and B^{\prime} respectively. It is easy to see that $a_{n+1,0}^{\prime}=1$ and $b_{n+1,0}^{\prime}=0$. From $\left(c, f_{k n}(a), f_{k n}(b)\right) \in R_{k}$ we obtain that $x^{\prime}=0$ (hence $y^{\prime}=n+2$, because $x^{\prime} \vee y^{\prime}=n+2$) and $c_{n+1,0}=1$. From $\left(f_{k n}(a), f_{k n}(b), d\right) \in R_{k}$ we infer that $d_{n+1,0}=0$. Let us set $J=\langle[s],[w]\rangle$, where s and w are the least and the greatest element of L_{k+1} respectively. Then $H \subseteq J$ and according to $\left(\mathrm{F}_{2}\right)$ we have $([u],[v]) \in \operatorname{Fund}(J)$ such that $([u],[c],[d]) \in R$ and $([c],[d],[v]) \in R$. We can suppose that $u, v \in M_{p}$ for some $p>k, u=\left(x^{\prime \prime}, U\right), v=$ $\left(y^{\prime \prime}, V\right)$. Let $f_{p k}(c)=\left(0, C^{\prime}\right), f_{p k}(d)=\left(0, D^{\prime}\right)$, where the entries of matrices C^{\prime} and D^{\prime} are denoted by $c_{i j}^{\prime}$ and $d_{i j}^{\prime}$, respectively. It is easy to see that $c_{n+1,0}^{\prime}=c_{n+1,0}=1$, $c_{n+1, k+1}^{\prime}=0, d_{n+1,0}^{\prime}=d_{n+1,0}=0$ and $d_{n+1, k+1}^{\prime}=1$. From $\left(u, f_{p k}(c), f_{p k}(d)\right) \in R_{p}$ and $\left(f_{p k}(c), f_{p k}(d), v\right) \in R_{p}$ we obtain that $u_{n+1,0}=1, u_{n+1, k+1}=0, v_{n+1,0}=0$, $v_{n+1, k+1} \in\{1,2\}$. According to the definition of the lattice K_{n}, this implies that $v_{n+1, k+1}=1$. Further, we have $f_{p, k+1}(w)=(k+2, W)$, the matrix W having entries denoted by $w_{i j}$. (If $k+1=p$, then $f_{p, k+1}$ is the identity mapping.) It is easy to see that $w_{n+1, k+1}=2$. Since $u_{n+1, k+1}=0$ and $v_{n+1, k+1}=1$, we obtain that $\left(u, f_{p, k+1}(w), v\right) \notin R_{p}$, a contradiction with $[w] \in J=\langle[u],[v]\rangle$.

The main result now follows from 2.2 and 2.3.
2.4. Theorem. The conditions $(A),(B),(C),(D)$ and $\left(F_{1}\right)$ do not axiomatize the betweenness relation of distributive lattices.

The question of whether the betweenness relation of (distributive) lattices is firstorder axiomatizable remains unsolved. Let us remark that $\left(\mathrm{F}_{2}\right)$ is a first-order condition. One can also consider the whole sequence $\left(\mathrm{F}_{3}\right),\left(\mathrm{F}_{4}\right), \ldots$ of first-order conditions that arise by adding more quantifiers (in an obvious way) to (F_{2}). Their strength remains unsettled.

References.

[1] Bandelt, H. J., van de Vel, M., Verheul E.: Modular interval spaces. Math. Nachrichten (to appear).
[2] Birkhoff, G., Kiss, S. A.: A ternary operation in distributive lattices. Bull. Amer. Math. Soc. 53(1947), 749-752.
[3] Hedlíková, J., Katriňák, T.: On a characterization of lattices by the betweenness relation - on a problem of M. Kolibiar. Algebra Universalis 28(1991), 389-400.
[4] Kolibiar, M.: On betweenness relations in lattices. Mat.-Fyz. Časopis SAV 5(1955), 162-171 (Slovak).
[5] Kolibiar, M.: Characterisierung der Verbände durch die Relation "zwischen". Zeitschr. für math. Logik und Grundlagen der Math. 4(1958), 89-100.
[6] Sholander, M.: Trees, lattices, order and betweenness. Proc. Amer. Math. Soc. 3(1952), 369-381.
[7] Sholander, M.: Medians and betweenness. Proc. Amer. Math. Soc. 5(1954), 801-807.

Mathematical Institute, Slovak Academy of Science, Grešákova 6, 04001 Košice, Slovakia

[^0]: Supported by GA SAV Grant 362/92

