
ON A CHARACTERIZATION OF DISTRIBUTIVE LATTICES

BY THE BETWEENNESS RELATION

Miroslav Ploščica

Abstract. We construct an example of a ternary structure satisfying certain condi-
tions due to M. Kolibiar, which is not a betweenness relation of any lattice. This answers
a question posed by J. Hedĺıkova and T. Katriňák.

1. Introduction.
Having a lattice L, one can define a ternary relation R on L as follows:

(a, b, c) ∈ R iff (a ∧ b) ∨ (b ∧ c) = b = (a ∨ b) ∧ (b ∨ c).

We refer to this relation as to the (ternary) betweenness relation on L.
G. Birkhoff and S. A. Kiss in their pioneering paper [2] characterized distributive

lattices with universal bounds in terms of a median operator m. In the early fifties,
several papers of Sholander were devoted to medians and betweenness relations. The
connection between the two subjects is

(a, b, c) ∈ R iff m(a, b, c) = b.

This has lead to the introduction of so-called median algebras; in combination with
the Birkhoff-Kiss results it has lead to a characterization of distributive lattices with
universal bounds in terms of betweenness.

What makes things more difficult is the lack of universal bounds. M. Kolibiar [5]
characterized abstractly the betweenness relation on (in general unbounded) lattices.
He proved that a ternary relation R on a set L is a betweenness relation of some
distributive lattice defined on L if and only if the relation R satisfies conditions (A),
(B), (C), (D) and (F) given below. The condition (F) was especially designed to
handle the case of unbounded lattices.

J. Hedĺıková and T. Katriňák [3] proved that the conditions (A), (B), (C), (D) and
(F) are independent. In the same paper they posed a question of whether the condition
(F) can be replaced by an another condition (F1) (see below). The condition (F1) has
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the advantage that it is a first-order property, while (F) is not. (The conditions (A),
(B), (C) and (D) are first-order properties.) This question is thus connected with
the problem of whether the ternary betweeness relation on (distributive) lattices is
first-order axiomatizable.

Lattice betweenness is closely connected with median algebras. A recent paper [1]
contains several ”axiom systems” of betweenness induced by a median operator. By
[1, Prop.1.5+Thm.4.6], median betweenness is characterized by the conditions (B),
(C), (D) and

(A′) Every element a belongs to the segment 〈a, a〉.
(See below for the definition of a segment.) It is not difficult to see that (A′) can be
replaced by the condition

(A′′) Every element a belongs to some segment.

Replacing (A′′) by (A) means requiring that every three points of a median algebra are
included in a segment. In fact, (A) and (D) imply that each finite subset of a median
algebra is included in a segment. Each segment of a median algebra is a distributive
lattice (with universal bounds). An example in [3] shows however, that the conditions
(A), (B), (C), (D) are not strong enough to characterize lattice betweenness.

In this paper we construct an example of a structure that satisfies (A), (B), (C),
(D) and (F1) but not (F). Hence, even the axiom system (A), (B), (C), (D), (F1) is
not sufficient to characterize lattice betweenness.

Let R be a ternary relation on a set M . For any elements a, c ∈ M we denote
〈a, c〉 = {b ∈ M | (a, b, c) ∈ R}. Any set of the form 〈a, c〉 is called a segment on
M . If G is a segment, then we define Fund(G) = {(a, c) ∈ M × M | 〈a, c〉 = G}.
Now we can formulate the conditions mentioned above. Because of the presence of
the condition (D), we use (A), (B), (C), (F) and (F1) in a slightly simpler form than
in [3]:

(A) For any a, b, c ∈ M there are d, e ∈ M such that {a, b, c} ⊆ 〈d, e〉.
(B) For any a, b, c ∈ M , 〈a, b〉 ∩ 〈a, c〉 ∩ 〈b, c〉 6= ∅
(C) If a, b, c ∈ M , then (a, b, c) ∈ R iff 〈a, b〉 ∩ 〈c, b〉 = {b}.
(D) For any a, b, c, d ∈ M , if {a, b} ⊆ 〈c, d〉, then 〈a, b〉 ⊆ 〈c, d〉.
(F) There exists a map assigning to every segment J a pair (aJ , bJ) ∈ Fund(J)

such that for all segments G, H the following holds:

if G ⊆ H, then (aH , aG, bG) ∈ R.

(F1) For every segment G there exists (a, b) ∈ Fund(G) such that for every segment
H satisfying G ⊆ H there exists (c, d) ∈ Fund(H) with (c, a, b) ∈ R.

We will need some elementary facts about betweenness relations on lattices. (See
[5].) If Lop is the dual lattice of a lattice L (i. e. L and Lop have the same elements and
x ≤ y holds in Lop iff y ≤ x holds in L), then the betweenness relations on L and Lop

coincide. If R is the betweenness relation of a direct product L1×L2 of lattices L1 and
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L2 (having R1 and R2 as the betweenness relations), then ((x, y), (z, t), (u, v)) ∈ R
iff (x, z, u) ∈ R1 and (y, t, v) ∈ R2. If R is the betweenness relation of a distributive
lattice, then (a, b, c) ∈ R iff a ∧ c ≤ b ≤ a ∨ c.

By a ternary structure we mean a set endowed with a ternary relation.

1.1. Lemma. Let Mi (i = 0, 1, 2, . . . ) be ternary structures satisfying the conditions
(A), (B), (C), (D). Suppose that Mi is a substructure of Mj whenever i ≤ j. Then
the ternary structure M =

⋃∞
i=0 Mi satisfies (A), (B), (C), (D), too.

Proof. Each of the conditions (A), (B), (C) and (D) concerns only a finite number
of elements. Their validity in M can be proved by considering Mi containing all the
elements involved. ¤
2. Construction.

Let Cn denote the n-element chain 0 < 1 < · · · < n− 1 viewed as a lattice. Let

Kn = {(x0, . . . , xn} ∈ C2 × (C3)n | x0 = 0 implies {x1, . . . , xn} ⊆ {0, 1}}.

It is easy to see that Kn is a sublattice of the (distributive) lattice C2×(C3)n. Further,
for any n ≥ 0 we denote

Ln = Cn+2 × (Kn)n.

Hence, Ln too is a distributive lattice. We consider elements of Ln in the form (a,A),
where a ∈ Cn+2 and A is a matrix with n rows and n + 1 columns. (Each row
represents an element of Kn.) We adopt the convention that entries of a matrix A
are denoted by aij , entries of a matrix B by bij , etc. (i ∈ {1, . . . n}, j ∈ {0, . . . , n}).

For every n ≥ 0 we define a mapping fn : Ln −→ Ln+1 as follows. For every
x = (a,A) ∈ Ln we set fn(x) = (a,B), where the matrix B (an extension of A) is
given by the following rules:
bij = aij whenever i ≤ n, j ≤ n;
bi,n+1 = 0 if a ≤ i;
bi,n+1 = 1 if a > i;
bn+1,j = 0 for every j > 0;
bn+1,0 = 0 if a 6= 0;
bn+1,0 = 1 if a = 0.

2.1. Lemma. For any natural numbers n and k with n < k there exists a lattice
Lk,n such that the following conditions are satisfied:

(1) the lattices Lk and Lk,n have the same elements;
(2) the betweenness relations of Lk and Lk,n coincide;
(3) the mapping f = fk−1 ◦ fk−2 ◦ · · · ◦ fn is a lattice embedding Ln −→ Lk,n.

Proof. Let us set Lk,n = Ck+2 × (Kk)n × (Kop
k )k−n. Then (1) and (2) are evident, it

remains to prove (3). The injectivity of f follows from the injectivity of fn, . . . , fk−1.
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Let p0 : Lk,n −→ Ck+2, p1 : Lk,n −→ Kk, . . . , pn : Lk,n −→ Kk, . . . ,pk : Lk,n −→
Kop

k be the natural projections. Since the operations in Lk,n are pointwise, it suffices
to show that pj ◦ f is a lattice homomorphism for every j = 0, 1, . . . , k. This is clear
for j = 0.

Suppose now that 0 < j ≤ n. Let x, y ∈ Ln, x = (a,A), y = (b,B). Then
pj(f(x)) = (aj0, aj1, . . . , ajn, c, c, . . . , c),
pj(f(y)) = (bj0, bj1, . . . , bjn, d, d, . . . , d),
where c, d ∈ {0, 1} are such that c = 0 iff a ≤ j and d = 0 iff b ≤ j. Clearly, c∨ d = 0
iff max{a, b} ≤ j and c ∧ d = 0 iff min{a, b} ≤ j. Hence, we have
pj(f(x)) ∨ pj(f(y)) = (aj0 ∨ bj0, . . . , ajn ∨ bjn, c ∨ d, . . . , c ∨ d) = pj(f(x ∨ y)),
pj(f(x)) ∧ pj(f(y)) = (aj0 ∧ bj0, . . . , ajn ∧ bjn, c ∧ d, . . . , c ∧ d) = pj(f(x ∧ y)).

Finally, let n < j ≤ k and let x, y ∈ Ln be as above. Then pj(f(x)) = (p, 0, 0, . . . , 0),
pj(f(y)) = (q, 0, 0, . . . , 0), pj(f(x∨y)) = (r, 0, 0, . . . , 0) and pj(f(x∧y)) = (s, 0, 0, . . . , 0),
where p, q, r, s ∈ {0, 1} are such that p = 0 iff a 6= 0, q = 0 iff b 6= 0, r = 0
iff max{a, b} 6= 0 and s = 0 iff min{a, b} 6= 0. Since Kop

k is dual to Kk, we
have pj(f(x)) ∧ pj(f(y)) = (max{p, q}, 0, . . . , 0) = (s, 0, . . . , 0) = pj(f(x ∧ y)) and
pj(f(x)) ∨ pj(f(y)) = (min{p, q}, 0, . . . , 0) = (r, 0, . . . , 0) = pj(f(x ∨ y)). ¤

Let Mn be the ternary (betweenness) structure associated with the lattice Ln.
(The ternary betweenness relation itself is denoted by Rn.) As a consequence of 2.1
we obtain that any fkn = fk−1 ◦ · · · ◦ fn is an embedding Mn −→ Mk. Let M be the
ternary structure that is a limit of the directed system

M0
f0−−−−→ M1

f1−−−−→ M2
f2−−−−→ . . .

Hence, elements of M are the equivalence classes of the equivalence relation ∼ on⋃∞
i=0 Mi given by the following rule: x ∼ y holds for x ∈ Mi, y ∈ Mj if and

only if fki(x) = fkj(y) for some k > i, j. Let [x] denote the equivalence class
containing an element x. The ternary relation R on the set M is defined in a
natural way: ([x], [y], [z]) ∈ R holds for x ∈ Mi, y ∈ Mj , z ∈ Mk if and only if
(fni(x), fnj(y), fnk(z)) ∈ Rn holds for some (and hence for all) n > i, j, k. Up to
isomorphism, we can assume that M is the union of the increasing chain

M0 ⊂ M1 ⊂ . . .

of its substructures.

2.2. Lemma. The structure M satisfies (A), (B), (C), (D) and (F1).

Proof. (A), (B), (C) and (D) are satisfied by 1.1. To prove (F1), let G = 〈[x], [y]〉
be an arbitrary segment of M . We can suppose that x, y ∈ Mn for some n. Let us
set a = x ∧ y, b = x ∨ y, where ∧ and ∨ refer to the lattice Ln. It is clear that
([a], [b]) ∈ Fund(G). Let H = 〈[z], [t]〉 be any segment with G ⊆ H. We can suppose
that z, t ∈ Mk for some k > n. Let us set c = z ∧ t, d = z ∨ t, where ∧ and ∨ refer to
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the lattice Lk,n. Then ([c], [d]) ∈ Fund(H) and we have to show that ([c], [a], [b]) ∈ R,
or equivalently, that (c, fkn(a), fkn(b)) ∈ Rk. Since G ⊆ H, we have [a], [b] ∈ H,
which means that c ≤ fkn(a) ≤ d and c ≤ fkn(b) ≤ d are valid in Lk,n. Since fkn is a
lattice homomorphism Ln −→ Lk,n, we obtain that c ≤ fkn(a)∧fkn(b) = fkn(a∧b) =
fkn(a) ≤ fkn(b) and therefore (c, fkn(a), fkn(b)) ∈ Rk. ¤

Instead of proving that M does not satisfy (F) we will show that it does not satisfy
even the following weaker condition:

(F2) for every segment G there exists (a, b) ∈ Fund(G) such that for every segment
H ⊇ G there exists (c, d) ∈ Fund(H) such that for every segment J ⊇ H there
exists (u, v) ∈ Fund(J) with (c, a, b) ∈ R and (u, c, d) ∈ R.

By [5] (assertion 4.3.6), if a ternary structure satisfies (A), (B) and (C) then a ∈
〈c, b〉 and b ∈ 〈c, d〉 imply b ∈ 〈a, d〉. Hence, in the presence of the conditions (A),
(B), (C) we can add the relations (a, b, d) ∈ R and (c, d, v) ∈ R to the condition (F2),
making it symmetric.

2.3. Lemma. The structure M does not satisfy (F2).

Proof. By way of contradiction, suppose that (F2) is fulfilled. Let us set G = 〈[0], [1]〉,
where 0 = (0, ∅) and 1 = (1, ∅) are the only two elements of M0. Let [a], [b] ∈ M with
the property according to (F2). We can assume that a, b ∈ Mn for some n, a = (x,A),
b = (y, B). Since ([a], [b]) ∈ Fund(G), we obtain that fn0(0) ∨ fn0(1) = a ∨ b and
fn0(0)∧fn0(1) = a∧b hold in Ln, which implies that x∨y = 1 and x∧y = 0. Without
loss of generality, x = 0 and y = 1. Let z = (0, Z) and t = (n + 2, T ) be the least and
the greatest element of Ln+1, respectively. Let us set H = 〈[z], [t]〉. Since [a], [b] ∈ H,
we have G ⊆ H. Let ([c], [d]) ∈ Fund(H) be according to (F2). We can assume that
c, d ∈ Mk for some k > n, c = (x′, C), d = (y′, D). Since ([c], [d]) ∈ Fund(H), we
obtain that x′ ∨ y′ = n + 2 and x′ ∧ y′ = 0. Let fkn(a) = (0, A′), fkn(b) = (1, B′)
and denote by a′ij , b′ij the entries of the matrices A′ and B′ respectively. It is easy
to see that a′n+1,0 = 1 and b′n+1,0 = 0. From (c, fkn(a), fkn(b)) ∈ Rk we obtain
that x′ = 0 (hence y′ = n + 2, because x′ ∨ y′ = n + 2) and cn+1,0 = 1. From
(fkn(a), fkn(b), d) ∈ Rk we infer that dn+1,0 = 0. Let us set J = 〈[s], [w]〉, where
s and w are the least and the greatest element of Lk+1 respectively. Then H ⊆ J
and according to (F2) we have ([u], [v]) ∈ Fund(J) such that ([u], [c], [d]) ∈ R and
([c], [d], [v]) ∈ R. We can suppose that u, v ∈ Mp for some p > k, u = (x′′, U), v =
(y′′, V ). Let fpk(c) = (0, C ′), fpk(d) = (0, D′), where the entries of matrices C ′ and
D′ are denoted by c′ij and d′ij , respectively. It is easy to see that c′n+1,0 = cn+1,0 = 1,
c′n+1,k+1 = 0, d′n+1,0 = dn+1,0 = 0 and d′n+1,k+1 = 1. From (u, fpk(c), fpk(d)) ∈ Rp

and (fpk(c), fpk(d), v) ∈ Rp we obtain that un+1,0 = 1, un+1,k+1 = 0, vn+1,0 = 0,
vn+1,k+1 ∈ {1, 2}. According to the definition of the lattice Kn, this implies that
vn+1,k+1 = 1. Further, we have fp,k+1(w) = (k + 2,W ), the matrix W having entries
denoted by wij . (If k + 1 = p, then fp,k+1 is the identity mapping.) It is easy
to see that wn+1,k+1 = 2. Since un+1,k+1 = 0 and vn+1,k+1 = 1, we obtain that
(u, fp,k+1(w), v) /∈ Rp, a contradiction with [w] ∈ J = 〈[u], [v]〉. ¤
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The main result now follows from 2.2 and 2.3.

2.4. Theorem. The conditions (A), (B), (C), (D) and (F1) do not axiomatize the
betweenness relation of distributive lattices.

The question of whether the betweenness relation of (distributive) lattices is first-
order axiomatizable remains unsolved. Let us remark that (F2) is a first-order condi-
tion. One can also consider the whole sequence (F3), (F4), . . . of first-order conditions
that arise by adding more quantifiers (in an obvious way) to (F2). Their strength re-
mains unsettled.
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