
AFFINE COMPLETE MEDIAN ALGEBRAS

Miroslav Ploščica*

Abstract. In 1993, Bandelt has determined all locally affine complete median al-
gebras as those median algebras that do not contain a nontrivial Boolean segment.
In the present paper we characterize those median algebras that are not only locally
affine complete, but even affine complete. The condition that forces a locally affine
complete median algebra M to be affine complete is that certain subsets of M - the
proper Čebyšev subsets - are finitely bounded. This condition will also be shown to
be necessary for affine completeness. Hence, we obtain the following characteriza-
tion: A median algebra is affine complete iff it does not contain a nontrivial Boolean
segment and every proper Čebyšev set is finitely bounded.

1. Preliminaries

Let A be a universal algebra. A function f : An −→ A is called compatible if,
for any congruence θ of A, (ai, bi) ∈ θ, i = 1, . . . , n, implies that
(f(a1, . . . , an), f(b1, . . . , bn)) ∈ θ.

A polynomial function (or simply a polynomial) of A is any function that can be
obtained by composition of the basic operations of A, the projections and the con-
stant functions. A local polynomial of A is any function which can be interpolated
by polynomials on all finite subsets of its domain.

Obviously, (local) polynomials are compatible functions. An algebra is called
(locally) affine complete if the converse holds: every compatible function is a (local)
polynomial.

Affine completeness has been investigated for various classes of algebras. The
papers [3], [4], [7] and [9] contain some ideas that are close to our considerations.
We also use results of Bandelt ([1]) about local affine completeness.

Now we recall the definition and some terminology for median algebras. For
more information see also Bandelt and Hedĺıková ([2]), van de Vel ([10]) and Isbell
([6]). Note that the median algebras we are dealing with in this note are called
symmetric media in [6].

On any distributive lattice D we define the median polynomial by

m(x, y, z) = (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z).

This operation turns D into a median algebra. In general, a median algebra is an
algebra endowed with a single ternary operation which can be embedded in (D, m)
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for some distributive lattice D. Median algebras form a variety (equational class).
This variety can be defined, for example, by the following identities ([6]):

m(a, a, b) =a,

m(a, b, c) =m(a, c, b) = m(b, a, c) = m(b, c, a) = m(c, a, b) = m(c, b, a),

m(a, c, d) =m(a,m(a, c, d), m(b, c, d)).

(See [2] for other systems of axioms.) Every median algebra is a subdirect power of
the 2-element algebra (2,m), where 2 is the 2-element lattice and m is its median
operation. We always assume that a median algebra M is embedded in (D, m)
for some distributive lattice D and lattice operations appearing in the text refer
to this lattice. Since this embedding is not unique, we want to point out that our
statements will be valid for any such embedding.

Let M be a median algebra. For elements a, b, c ∈ M we say that c is between
a and b if c = m(a, b, c). A subset C of M is convex if a, b ∈ C and x ∈ M
imply m(a, b, x) ∈ C. Equivalently, C is convex if, for every a, b ∈ C, C contains all
elements of M that are between a and b. It is easy to see that the intersection of any
number of convex sets is convex. Hence, for any subset A of M there is the smallest
convex set containing A. We denote it by ConvA. A set of the form Conv{a, b} is
called a segment. It is not difficult to show that the segment Conv{a, b} consists
of all elements that are between a and b. Any segment (or, more generally, any
convex set) is a subalgebra of M . A segment is called Boolean if it is isomorphic to
(B, m) for some Boolean lattice B.

A nonempty convex set is prime if its complement is also convex and nonempty.
Any prime convex set C determines a congruence θ of M with the equivalence classes
C and M \C. Congruences of this form are called split congruences. Clearly, M/θ
is isomorphic to (2,m). Using the Zorn’s lemma, one can show the following.

1.1. Lemma. (Nieminen [8]) Let A ⊆ M be a nonempty convex set, x ∈ M \ A.
Then there is a prime convex set P with A ⊆ P , x /∈ P .

Locally affine complete median algebras were characterized by H.-J. Bandelt as
follows. A segment is nontrivial if it contains at least two elements.

1.2. Theorem([1]). A median algebra M is locally affine complete if and only if
it does not contain a nontrivial Boolean segment.

Using the results of [1], we will single out those algebras that are affine complete.

2. Polynomials and Čebyšev sets

A term function of a universal algebra A is any function composed of the pro-
jections (i.e. variables) and the basic operations.

2.1. Lemma. Let M be a median algebra, ∅ 6= I ⊆ {1, . . . , n}. The formula

h(x0, x1, . . . , xn) = (x0 ∧
∨

i∈I

xi) ∨
∧

i∈I

xi

defines a (median) term function h : Mn+1 −→ M .

Proof. We proceed by induction on |I| (the cardinality of I). If |I| = 1 then
h(x0, . . . , xn) = x1 is clearly a term function. Suppose that |I| > 1 and choose
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j ∈ I arbitrarily. Let J = I \ {j}. By the induction hypothesis, g(x0, . . . , xn) =
(x0 ∧

∨
i∈J xi) ∨

∧
i∈J xi is a term function. Then m(x0, g(x0, . . . , xn), xj) is also a

term function and
m(x0, g(x0, . . . , xn), xj) = (x0 ∨ (g(x0, . . . , xn) ∧ xj)) ∧ (g(x0, . . . , xn) ∨ xj) =
(x0 ∨

∧
i∈J xi) ∧ (x0 ∨ xj) ∧ ((x0 ∧

∨
i∈J xi) ∨ xj ∨

∧
i∈J xi) =

(x0 ∨
∧

i∈I xi) ∧ (x0 ∨ xj ∨
∧

i∈J xi) ∧
∨

i∈I xi =
(x0 ∨

∧
i∈I xi) ∧

∨
i∈I xi = h(x0, . . . , xn). ¤

The function h defined in 2.1 will be denoted by hI . Notice that the expression is
symmetrical, i.e. hI(x0, . . . , xn) = (x0∧

∨
i∈I xi)∨

∧
i∈I xi = (x0∨

∧
i∈I xi)∧

∨
i∈I xi.

2.2. Lemma. . Let F be a family of subsets of {1, . . . , n} such that I ∩ J 6= ∅
whenever I, J ∈ F. Then the formula

hF(x0, . . . , xn) =

(
x0 ∨ (

∨

I∈F

∧

i∈I

xi)

)
∧ (

∧

I∈F

∨

i∈I

xi)

defines a term function Mn+1 −→ M .

Proof. We proceed by induction on |F|. If F = ∅ then hF(x0, . . . , xn) = x0, which
is clearly a term function. Suppose now that |F| > 0 and choose J ∈ F arbitrarily.
Let G = F \ {J}. Then hG is a term function by the induction hypothesis and it
suffices to show that hF(x0, . . . , xn) = hJ (hG(x0, . . . , xn), x1, . . . , xn). Since J has
a nonempty intersection with every I ∈ G we have

∧
i∈J xi ≤

∧
I∈G

∨
i∈I xi. Using

the distributivity we obtain that hJ (hG(x0, . . . , xn), x1, . . . , xn) =
((x0 ∨ (

∨
I∈G

∧
i∈I xi)) ∧ (

∧
I∈G

∨
i∈I xi) ∧ (

∨
i∈J xi)) ∨ (

∧
i∈J xi) =

(x0 ∨ (
∨

I∈F

∧
i∈I xi)) ∧ (

∧
I∈G

∨
i∈I xi) ∧ (

∨
i∈J xi) = hF(x0, . . . , xn). ¤

If we set I = {1, . . . , n}, F = {I} and replace variables x1, . . . , xn by constants,
we obtain the following consequence of 2.1.

2.3. Lemma. Let a1, . . . , an be elements of a median algebra M . Then f(x) =
(x ∧∧n

i=1 ai) ∨
∧n

i=1 ai is a polynomial of M .

2.4. Lemma. Let M be a median algebra, a1, . . . , an ∈ M . Then

Conv({a1, . . . , an}) = {x ∈ M |
n∧

i=1

ai ≤ x ≤
n∨

i=1

ai}.

Proof. First we show that the set C = {x ∈ M | ∧n
i=1 ai ≤ x ≤ ∨n

i=1 ai} is convex.
Let x, y, z ∈ M , y, z ∈ C. Then m(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) ≤ (x ∧∨n

i=1 ai)∨ (x∧∨n
i=1 ai)∨

∨n
i=1 ai =

∨n
i=1 ai and symetrically, m(x, y, z) ≥ ∧n

i=1 ai.
Now let K be a convex set, {a1, . . . , an} ⊆ K. By induction on k we prove the

following assertion:

if
k∧

i=1

ai ≤ x ≤
k∨

i=1

ai then x ∈ K.

For k = 1 we have a1 ≤ x ≤ a1, hence x = a1 ∈ K. Suppose now that
∧k

i=1 ai ≤
x ≤ ∨k

i=1 ai. Let y = (x∨∧k−1
i=1 ai)∧

∨k−1
i=1 ai. By 2.3, y ∈ M , and by the induction

hypothesis y ∈ K. Since K is convex, we have m(x, y, ak) ∈ K and
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y ∧ ak = (x ∧ ak ∧
∨k−1

i=1 ai) ∨
∧k

i=1 ai,
y ∨ ak = (x ∨ ak ∨

∧k−1
i=1 ai) ∧

∨k
i=1 ai,

m(x, y, ak) = (x ∨ (y ∧ ak)) ∧ (y ∨ ak) =
(x ∨∧k

i=1 ai) ∧ (x ∨ ak ∨
∧k−1

i=1 ai) ∧
∨k

i=1 ai = (x ∨∧k
i=1 ai) ∧

∨k
i=1 ai = x.

Putting k = n we obtain that C ⊆ K. ¤

A subset C of a median algebra M is called a Čebyšev set, if for every x ∈ M
there exists xC ∈ C such that m(x, xC , y) = xC for every y ∈ C (i.e. xC is between
x and every element of C). Čebyšev sets have been introduced in [6]. They are
connected with some maps on median algebras (called contractions or retractions)
and are used in some geometrical considerations. (See also [5].)

2.5. Lemma. Let M be a median algebra. Then C = Conv({a1, . . . , an}) is a
Čebyšev set for any a1, . . . , an ∈ M and xC = (x ∨ ∧n

i=1 ai) ∧
∨n

i=1 ai for every
x ∈ M .

Proof. Let x ∈ M and let xC be defined as above. Then for any y ∈ C we have∧n
i=1 ai ≤ y ≤ ∨n

i=1 ai and hence m(x, xC , y) = (x∨∧n
i=1 ai)∧ (x∨ y)∧ (xC ∨ y) =

(x ∨∧n
i=1 ai) ∧ (x ∨ y) ∧ (x ∨ y ∨∧n

i=1 ai) ∧ (y ∨∨n
i=1 ai) =

(x ∨ (y ∧∧n
i=1 ai)) ∧ (y ∨∨n

i=1 ai) = (x ∨∧n
i=1 ai) ∧

∨n
i=1 ai = xC . ¤

Čebyšev sets of the form Conv{a1, . . . , an} will be called finitely bounded.

2.6. Lemma. Let f : Dn −→ D be a lattice polynomial of a distributive lattice
D, n ≥ 1. Then

f(x1, . . . , xn) ≤
n∨

i=1

f(xi, . . . , xi)

holds for every x1, . . . , xn ∈ D.

Proof. By the distributivity, f can be expressed in the form
f(x1, . . . , xn) =

∨k
j=1 fj(x1, . . . , xn), where each fj is a meet of some variables and

(possibly) a constant. It suffices to show that fj(x1, . . . , xn) ≤ ∨n
i=1 f(xi, . . . , xi)

for each j. But this is clear, since fj is either constant and then fj(x1, . . . , xn) =
fj(x1, . . . , x1) ≤ f(x1, . . . , x1) or contains some variable xi, which implies that
fj(x1, . . . , xn) ≤ fj(xi, . . . , xi) ≤ f(xi, . . . , xi). ¤

Since the above statement concerns only a finite number of elements, it is obvi-
ously valid for local polynomials, too. Further, if we consider a median algebra M
embedded in a distributive lattice D, then any polynomial of M is a restriction of
some lattice polynomial of D. Therefore, we obtain the following consequence.

2.7. Consequence. Let f : Mn −→ M be a (local) polynomial function of a
median algebra M , n ≥ 1. Then

f(x1, . . . , xn) ≤
n∨

i=1

f(xi, . . . , xi)

holds for every x1, . . . , xn ∈ M .

We also need the following result from [1]:
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2.8. Lemma([1]). Every unary local polynomial function of a median algebra is
idempotent.

The above assertion can be generalized as follows.

2.9. Lemma. Let f be a n-ary local polynomial of a median algebra M . Let
y1, . . . , yn ∈ M , I ⊆ {1, . . . , n}. Then f(y1, . . . , yn) = f(z1, . . . , zn), where

zi =
{

yi if i /∈ I,

f(y1, . . . , yn) if i ∈ I.

Proof. We proceed by induction on the cardinality of I. If I = ∅, the statement is
trivial. Suppose now that |I| > 0 and the statement holds for all sets J ⊆ {1, . . . , n}
with |J | < |I|. Choose j ∈ I arbitrarily. Let us define a function h : M −→ M by
h(x) = f(t1, . . . , tn), where

ti =
{

yi if i 6= j,

x if i = j.

This is clearly a unary local polynomial. By 2.8, this function is idempotent. Hence,
we have f(y1, . . . , yn) = f(y′1, . . . , y

′
n), where

y′i =
{

yi if i 6= j,

f(y1, . . . , yn) if i = j.

Using the induction hypothesis for the set J = I \ {j} we have f(y′1, . . . , y
′
n) =

f(z′1, . . . , z
′
n), where

z′i =





yi = zi if i /∈ I,

f(y′1, . . . , y
′
n) = zi if i ∈ J,

yj = f(y1, . . . , yn) = zi if i = j,

hence f(y1, . . . , yn) = f(z1, . . . , zn). ¤

3. Affine completeness - the finitely bounded case

3.1. Lemma. Let f, g : Mn −→ M be compatible functions of a median algebra
M . Let a1, . . . , ak ∈ M . If f and g coincide on {a1, . . . , ak}n then they coincide
on (Conv{a1, . . . , ak})n.

Proof. On the contrary, suppose that f(x1, . . . , xn) 6= g(x1, . . . , xn) for some
x1, . . . , xn ∈ Conv{a1, . . . , ak}. By 1.1 there is a prime convex set P such that
f(x1, . . . , xn) ∈ P and g(x1, . . . , xn) /∈ P . Let θ be the split congruence determined
by P (i.e. having P and M \ P as its equivalence classes). We claim that for
every i = 1, . . . , n there is yi ∈ {a1, . . . , ak} such that (xi, yi) ∈ θ. This is clear if
{a1, . . . , ak} has a nonempty intersection with both P and M \P . If this condition
is not satisfied, say {a1, . . . , ak} ⊆ P , (the case {a1, . . . , ak} ⊆ M \ P is similar),
then {x1, . . . , xn} ⊆ Conv{a1, . . . , ak} ⊆ P . The compatibility of f and g yields
that (f(x1, . . . , xn), f(y1, . . . , yn)) ∈ θ and (g(x1, . . . , xn), g(y1, . . . , yn)) ∈ θ. Since
f and g coincide on {a1, . . . , an}n, we have f(y1, . . . , yn) = g(y1, . . . , yn), hence
(f(x1, . . . , xn), g(x1, . . . , xn)) ∈ θ, a contradiction. ¤
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3.2. Consequence. If f : Mn −→ M is a local polynomial function of a median
algebra M then, for every a1, . . . ak ∈ M , the function f can be interpolated on
(Conv{a1, . . . , ak})n by a polynomial.

Another consequence of 3.1 (together with 1.2) solves our problem in the case
when M itself is finitely bounded.

3.3. Theorem. Suppose that a median algebra M is finitely bounded. Then
(i) every local polynomial is a polynomial;
(ii) the median algebra M is affine complete if and only if it does not contain a

nontrivial Boolean segment.

We close this section with the following generalization of 3.3(i).

3.4. Lemma. Suppose that h : Mn −→ M is a local polynomial of a median
algebra M such that h(Mn) ⊆ Conv{a1, . . . , ak} for some a1, . . . , ak ∈ M . Then h
is a polynomial.

Proof. Let us set g(x) = (x ∧ ∨k
i=1 ai) ∨

∧k
i=1 ai. It is easy to see that g is an

endomorphism of the median algebra M (because the formula determines an en-
domorphism of the distributive lattice D in which M is embedded). Therefore, g
must preserve (i.e. commute with) the local polynomial h. Thus,
h(x1, . . . , xn) = g(h(x1, . . . , xn)) = h(g(x1), . . . , g(xn)). The local polynomial
h can be represented on the set (Conv{a1, . . . , ak})n by a polynomial p, hence
h(x1, . . . , xn) = p(g(x1), . . . , g(xn)), which means that we have represented h by a
polynomial on the whole Mn. ¤

4. Affine completeness - the unary case

4.1. Lemma. For any Čebyšev set C of a median algebra M , the function f :
M −→ M defined by f(x) = xC is compatible.

Proof. Let θ be a congruence of M . Let x, y ∈ M , (x, y) ∈ θ. Then (xC , yC) =
(m(x, xC , yC), m(y, xC , yC)) ∈ θ. ¤
4.2. Lemma. Let f : M −→ M be a compatible function of a median algebra M .
Suppose that M does not contain a nontrivial Boolean segment. Then

(i) f ◦ f = f ;
(ii) C = f(M) is a Čebyšev set;
(iii) f(x) = xC for every x ∈ M .

Proof. By 1.2 f is a local polynomial and by 2.8 it is idempotent. Hence, (i) holds.
To prove (ii) and (iii) it suffices to prove that m(x, f(x), y) = f(x) for every

x ∈ M and y ∈ f(M). For a contradiction, suppose that f(x) 6= m(x, f(x), y).
Hence, f(x) /∈ Conv{x, y}. By 1.1, there is a prime convex set P such that x, y ∈ P ,
f(x) /∈ P . Let θ be the congruence on M with equivalence classes P and M \ P .
Then (x, y) ∈ θ. Since f(y) = y (according to (i)), we obtain that (f(x), f(y)) =
(f(x), y) /∈ θ, which contradicts the compatibility of f . ¤
4.3. Lemma. Let a1, . . . , an, b1, . . . , bm, c1, . . . , cp be elements of a median algebra
M . Let us denote a∗ =

∧n
i=1 ai, b∗ =

∧m
i=1 bi, c∗ =

∧p
i=1 ci. Then

∧

i,j,k

m(ai, bj , ck) = (a∗ ∧ b∗) ∨ (a∗ ∧ c∗) ∨ (b∗ ∧ c∗).
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Proof. Denote t =
∧

i,j,k

m(ai, bj , ck). We have t ≥ ∧
i,j,k

(ai∧bj) =
∧
i,j

(ai∧bj) = a∗∧b∗

and similarly, t ≥ a∗ ∧ c∗, t ≥ b∗ ∧ c∗. Hence t ≥ (a∗ ∧ b∗) ∨ (a∗ ∧ c∗) ∨ (b∗ ∧ c∗).
Conversely, t ≤ ∧

i,j

(ai ∨ bj) = a∗ ∨ b∗ and hence t ≤ (a∗ ∨ b∗)∧ (a∗ ∨ c∗)∧ (b∗ ∨ c∗) =

(a∗ ∧ b∗) ∨ (a∗ ∧ c∗) ∨ (b∗ ∧ c∗). ¤
4.4. Lemma. Let f : M −→ M be a unary polynomial of a median algebra M .
Then f is an identity mapping or f(M) is a finitely bounded Čebyšev set.

Proof. We proceed by induction on the structure of f . If f is an identity map-
ping or a constant, the statement is obviously true. Suppose now that f(x) =
m(f1(x), f2(x), f3(x)), where f1, f2, f3 have the required property. If at least two
of f1, f2, f3 are identity mappings, then f is also an identity. We distinguish the
remaining two cases.

I. Suppose that none of f1, f2, f3 is an identity. Then f1(M) = Conv{a1, . . . , an},
f2(M) = Conv{b1, . . . , bm}, f3(M) = Conv{c1, . . . , cp} for some suitable elements
of M . We claim that

f(M) = Conv{m(ai, bj , ck) | i = 1, . . . , n, j = 1, . . . , m, k = 1, . . . , p}.

Let us denote a∗ =
∨n

i=1 ai, a∗ =
∧n

i=1 ai, b∗ =
∨m

i=1 bi, b∗ =
∧m

i=1 bi, c∗ =
∨p

i=1 ci,
c∗ =

∧p
i=1 ci. By 4.2 and 2.5, f1(x) = (x ∧ a∗) ∨ a∗, f2(x) = (x ∧ b∗) ∨ b∗,

f3(x) = (x∧c∗)∨c∗. By 4.3 we have
∧

i,j,k m(ai, bj , ck) = (a∗∧b∗)∨(a∗∧c∗)∨(b∗∧c∗)
and symetrically

∨
i,j,k m(ai, bj , ck) = (a∗ ∨ b∗) ∧ (a∗ ∨ c∗) ∧ (b∗ ∨ c∗). We have

f(x) = m(f1(x), f2(x), f3(x)) = (f1(x)∨ f2(x))∧ (f1(x)∨ f3(x))∧ (f2(x)∨ f3(x)) =
((x∧ (a∗∨b∗))∨ (a∗∨b∗))∧ ((x∧ (a∗∨c∗))∨ (a∗∨c∗))∧ ((x∧ (b∗∨c∗))∨ (b∗∨c∗)) =
(x ∨ ∧

i,j,k m(ai, bj , ck)) ∧ ∨
i,j,k m(ai, bj , ck). By 4.2, x ∈ f(M) if and only if

x = f(x) if and only if
∧

i,j,k m(ai, bj , ck) ≤ x ≤ ∨
i,j,k m(ai, bj , ck).

II. Suppose that f1(x) = (x∧a∗)∨a∗, f2(x) = (x∧ b∗)∨ b∗, f3(x) = x. We claim
that f(M) = Conv{a1, . . . , an, b1, . . . , bm}. We compute
f(x) = (x ∨ f1(x)) ∧ (x ∨ f2(x)) ∧ (f1(x) ∨ f2(x)) = (x ∨ a∗) ∧ (x ∨ b∗) ∧ ((x ∧
a∗) ∨ a∗ ∨ (x ∧ b∗) ∨ b∗) = (x ∨ (a∗ ∧ b∗)) ∧ ((x ∧ (a∗ ∨ b∗)) ∨ a∗ ∨ b∗) = (x ∨ (a∗ ∧
b∗)) ∧ (x ∨ a∗ ∨ b∗) ∧ (a∗ ∨ b∗) = (x ∨ (a∗ ∧ b∗)) ∧ (a∗ ∨ b∗). Now it is clear that
x ∈ f(M) if and only if x = f(x) if and only if a∗ ∧ b∗ ≤ x ≤ a∗ ∨ b∗ if and only if
x ∈ Conv{a1, . . . , an, b1, . . . , bm}. ¤

A Čebyšev set C ⊆ M is called proper if C 6= M . A median algebra M is called
1-affine complete if every unary compatible function is a polynomial.

4.5. Theorem. A median algebra M is 1-affine complete iff
(i) it does not contain a nontrivial Boolean segment;
(ii) every proper Čebyšev set is finitely bounded.

Proof. If M contains a nontrivial Boolean segment C then M is not even locally
affine complete by 1.2. In fact, the proof in [1] exhibits a unary compatible function
that is not a local polynomial (namely the function, which maps x ∈ M into the
complement of xC in C). If a proper Čebyšev set C ⊆ M is not finitely bounded
then x 7→ xC determines a compatible function that cannot be a polynomial in
view of 4.4.

Conversely, let (i) and (ii) be satisfied. Let f : M −→ M be a compatible
function. If f(M) = M then by 4.2(iii) f(x) = xM = x, hence f is an identity
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mapping, which is a polynomial. If f(M) 6= M then f(M) is a proper Čebyšev
set and, by our assumption, f(M) = Conv{a1 . . . , an} for some a1, . . . an ∈ M . By
4.2(iii), 2.3 and 2.5, f is a polynomial. ¤

5. Affine completeness - the general case

Throughout this section we assume that f : Mn −→ M is an n-ary compatible
function of a median algebra M . Further, we suppose that M does not contain a
nontrivial Boolean segment or a proper Čebyšev set which is not finitely bounded.
Hence, f is a local polynomial function.

Let F be the family of all sets I ⊆ {1, . . . , n} with the following property:
if y, x1, . . . , xn ∈ M are such that xi = y for every i ∈ I, then f(x1, . . . , xn) = y.
Let us choose u ∈ M arbitrarily. For any I ⊆ {1, . . . , n} we define a unary function
fu

I : M −→ M by
fu

I (x) = f(y1, . . . , yn), where

yi =
{

x for i ∈ I;
u for i /∈ I.

5.1. Lemma. If I /∈ F then fu
I (M) is a finitely bounded Čebyšev set.

Proof. It is clear that fu
I is a compatible function and hence, by 4.2(ii), fu

I (M)
must be a Čebyšev set.

Since I /∈ F, there are y, x1, . . . , xn ∈ M such that xi = y for i ∈ I and
f(x1, . . . , xn) 6= y. That is why the unary compatible function g defined by

g(x) = f(y1, . . . , yn), where

yi =
{

x for i ∈ I;
xi for i /∈ I.

is not an identity function (g(y) 6= y), which by 4.2 means that g(M) is a proper
Čebyšev set. By our assumption, there are a1, . . . , ak ∈ M such that g(M) =
Conv{a1, . . . , ak}.

By way of contradiction, assume that fu
I (M) is not finitely bounded. This is only

possible if fu
I is an identity function and M itself is not finitely bounded. Therefore,

we can choose x ∈ M \ Conv({a1, . . . , ak} ∪ {u} ∪ {xi | i /∈ I}). By 1.1 there is a
prime convex set P with x /∈ P , {a1, . . . , ak} ⊆ P , u ∈ P , {xi | i /∈ I} ⊆ P .
Let θ be the corresponding split congruence. Then (xi, u) ∈ θ whenever i /∈ I.
The compatibility of f implies that (g(x), fu

I (x)) ∈ θ, which is impossible since
g(x) ∈ Conv{a1, . . . , ak} ⊆ A while fu

I (x) = x /∈ A. ¤
Considering 5.1 with all possible I /∈ F we obtain the following assertion.

5.2. Lemma. There are c1, . . . , cm ∈ M such that fu
I (x) ∈ Conv{c1, . . . , cm} for

every x ∈ M , I ⊆ {1, . . . , n}, I /∈ F.

5.3. Lemma. If the median algebra M has at least two elements, then I ∩ J 6= ∅
for every I, J ∈ F.

Proof. Suppose that I, J ∈ F, I∩J = ∅. Choose a, b ∈ M , a 6= b. Let (y1, . . . , yn) ∈
Mn be such that yi = a for i ∈ I and yi = b for i ∈ J . By the definition of F then
f(y1, . . . , yn) = a and f(y1, . . . , yn) = b, a contradiction. ¤
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5.4. Lemma. Let I ⊆ {1, . . . , n}, y, x1, . . . , xn ∈ M . Let y1, . . . , yn ∈ M be such
that yi = y for every i ∈ I and yi = xi for every i /∈ I. Then f(x1, . . . , xn) ∈
Conv({f(y1, . . . , yn)} ∪ {xi | i ∈ I}).
Proof. For contradiction, suppose that f(x1, . . . , xn) /∈ Conv({f(y1, . . . , yn)} ∪
{xi | i ∈ I}). Then there is a prime convex set P ⊆ M such that f(x1, . . . , xn) /∈ P ,
f(y1, . . . , yn) ∈ P and {xi | i ∈ I} ⊆ P . Let θ be the corresponding split congruence.
By 2.9, f(y1, . . . , yn) = f(z1, . . . , zn), where

zi =
{

yi if i /∈ I,

f(y1, . . . , yn) if i ∈ I.

Clearly (xi, zi) ∈ θ for every i = 1, 2, . . . , n, but (f(x1, . . . , xn), f(z1, . . . , zn)) /∈ θ,
a contradiction with the compatibility of f . ¤

Let us define a function g : Mn −→ M by

g(x1, . . . , xn) =


f(x1, . . . , xn) ∨

m∧

j=1

cj


 ∧

m∨

j=1

cj ,

where cj are the elements defined in 5.2. Since g is a composition of the compatible
function f and the unary polynomial p(x) = (x ∨ ∧m

j=1 cj) ∧
∨m

j=1 cj , g is also
compatible. By 3.4, g is a polynomial function.

5.5. Lemma. For every x1, . . . , xn ∈ M , the following formula holds true:

(*) f(x1, . . . , xn) =

(
g(x1, . . . , xn) ∨ (

∨

I∈F

∧

i∈I

xi)

)
∧ (

∧

I∈F

∨

i∈I

xi).

Proof. If |M | = 1, the statement is trivial. Let us suppose that |M | > 1. By 5.3, any
two sets from F have a nonempty intersection, which implies that

∨
I∈F

∧
i∈I xi ≤∧

I∈F

∨
i∈I xi. Therefore the right side of (*) is symmetrical and it suffices to prove

one inequality.
First we prove that f(x1, . . . , xn) ≤ ∨

i∈I xi holds for every I ∈ F. Choose
y ∈ {xi | i ∈ I} arbitrarily. By 5.4 we have f(x1, . . . , xn) ≤ f(y1, . . . , yn) ∨∨

i∈I xi,
where yi = xi for i /∈ I and yi = y for i ∈ I. Since I ∈ F, we have f(y1, . . . , yn) =
y ≤ ∨

i∈I xi, hence f(x1, . . . , xn) ≤ ∨
i∈I xi.

It remains to show that

f(x1, . . . , xn) ≤ g(x1, . . . , xn) ∨
∨

I∈F

∧

i∈I

xi.

By the definition of g it suffices to prove that

f(x1, . . . , xn) ≤
m∨

j=1

cj ∨
∨

I∈F

∧

i∈I

xi.

Using the distributivity we obtain that
∨

I∈F

∧
i∈I xi =

∧
J∈G

∨
i∈J xi, where

G = {J ⊆ {1, . . . , n} | J ∩ I 6= ∅ for every I ∈ F}.
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Hence, we have to show that, for every J ∈ G,

f(x1, . . . , xn) ≤
m∨

j=1

cj ∨
∨

i∈J

xi.

For any such J we have {1, . . . , n} \ J = K /∈ F. By 5.2, fu
K(y) ≤ ∨m

j=1 cj for
every y ∈ M . According to 2.7 and 5.4 (with J and u playing the roles of I and
y), f(x1, . . . , xn) ≤ ∨n

k=1 f(xk, . . . , xk) ≤ ∨n
k=1(f

u
K(xk) ∨ ∨

i/∈K xi) ≤
∨m

j=1 cj ∨∨
i∈J xi. ¤
Using the denotation from 2.2, we have obtained that

f(x1, . . . , xn) = hF(g(x1, . . . , xn), x1, . . . , xn).

Since both hF and g are polynomials, f is a polynomial too.
We have proved that if a median algebra M does not contain a nontrivial Boolean

segment and every proper Čebyšev set is finitely bounded, then M is affine complete.
Together with 4.5 we obtain our main result.

5.6. Theorem. A median algebra M is affine complete if and only if the following
conditions are satisfied:

(i) M does not contain a proper boolean segment;
(ii) every proper Čebyšev set of M is finitely bounded.

We conclude with some examples. Let L be any distributive lattice without the
least element and m its median operation. Then it is easy to see that the median
algebra (L,m) is not affine complete. Indeed, for any x ∈ L the set C = {y ∈
L | y ≤ x} is Čebyšev (with yC = y ∧ x) and not finitely bounded. If there is no
Boolean interval in L, we have an example of a median algebra, which is locally
affine complete but not affine complete.

On the other hand, it is not easy to find an affine complete median algebra,
which is not finitely bounded. (And for finitely bounded median algebras affine
completeness is equivalent to local affine completeness.) As an example of such
algebra we can mention the free median algebra with an infinite number of free
generators. It is clear that this algebra is not finitely bounded. However, the proof
of affine completeness is rather nontrivial and we omit it here.
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