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Abstract. We investigate injective objects in the category of ordered topological
spaces and show their close connection to continuous lattices.

Injective objects have been investigated for various categories. Many references
can be found in [3]. Our basic reference for notions not explained here is [2].

Let M be some class of morphisms of a category C. An object X of C is called
M-injective if, for every f ∈ M, f : A → B, and every morphism g : A → X
there exists a morphism h : B → X with hf = g. Usually, M is chosen to be the
class of all embeddings (or, in abstract categories, monomorphisms). Then, in the
above definition, A is a subobject of B and the condition just requires that every
morphism A → X extend to a morphism B → X.

Let T denote the category of all topological T0-spaces and continuous maps.
We always assume that a topological space (X, Ω) is given by its underlying set X
and a family Ω of open sets. For any such space we define the specialization order
relation ≤ on the set X by the rule

x ≤ y iff (x ∈ A ∈ Ω implies y ∈ A).

Let J be the class of all embeddings of T0-spaces. The following well-known
result of D. Scott serves as a motivation for our investigation. Recall that A is a
retract of B if there are morphisms f : A → B, g : B → A with gf = idA.

Theorem 1 (See [2], pp.121-124). Let (X, Ω) be a T0-space and ≤ its specialization
order. The following conditions are equivalent:

(1) (X, Ω) is a J -injective object in T ;
(2) (X,≤) is a continuos lattice and Ω is its Scott topology;
(3) (X, Ω) is a retract of some power of the space (S, σ), where S = {0, 1} and

σ = {∅, {1}, S}.
¤
The condition (2) shows that injective T0-spaces are ordered in a natural way.

Thus, one can expect that they will play an important role in characterizing injective
objects in a suitable category of ordered topological spaces. The aim of the present
paper is to confirm this conjecture.

Let us denote by U the category of all ordered T0-spaces (X, Ω,≤) (where Ω is
a T0-topology and ≤ is a partial order relation on X, without any requirements
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on compatibility) and continuous isotone maps. It is not difficult to prove that U
has no nontrivial injectives with respect to the class of all embeddings. For our
purposes, the class of all embeddings must be restricted.

Let Ω be a topology on a partially ordered set (X,≤). For x ∈ X, A ⊆ X we
set ↑x = {y ∈ X | x ≤ y}, ↓x = {y ∈ X | x ≥ y}, ↑A =

⋃
x∈A ↑x, ↓A =

⋃
x∈A ↓x,

↑Ω = {A ∈ Ω | A =↑A}, ↓Ω = {A ∈ Ω | A =↓A}. For any Y ⊆ X we consider
the ordered space (Y, ΩY ,≤Y ), where ΩY and ≤Y are the relativizations of Ω and
≤, respectively. We say that (Y, ΩY ,≤Y ) is an order subspace of (X, Ω,≤) if the
following conditions are satisfied:

↑ΩY = {Y ∩A | A ∈↑Ω};

↓ΩY = {Y ∩A | A ∈↓Ω}.
The notion of an order subspace was introduced by H. A. Priestley [5] and S. D.
McCartan [4]. Let M denote the class of all embeddings f : Z → X of ordered
T0-spaces, for which f(Z) is an order subspace of X. The M-injective objects in
U will be called injective ordered spaces and we shall give their description. First
we summarize some general facts about injective objects, which are easy to prove.

Lemma 2. Let M be a class of morphisms of a category C. Then

(1) every product of M-injective objects is M-injective;
(2) every retract of a M-injective object is M-injective;
(3) if X is a M-injective object and f ∈ M, f : X → Y , then X is a retract

of Y .

¤

Let S1 and S2 be the ordered spaces defined on the underlying set {0, 1} with
the natural order (0 < 1) and topologies σ1 = {∅, {1}, S} and σ2 = {∅, {0}, S},
respectively.

Lemma 3. S1 and S2 are injective ordered spaces.

Proof. We prove the statement for S1. Suppose that f ∈ M, f : (Y, Ω,≤) →
(Z, Ω′,≤′) and let g : Y → S1 be a continuous isotone map. Then g−1({1}) ∈↑Ω,
hence f(g−1({1})) = f(Y ) ∩ A for a suitable A ∈↑ Ω′. Let h : Z → S1 be the
characteristic function of A. It is easy to see that h is a continuous isotone map
and hf = g. ¤

Lemmas 2 and 3 provide us a rich family of injective ordered spaces. In the sequel
we shall prove the converse: every injective ordered space can be constructed from
S1 and S2 by means of products and retracts.

Lemma 4. Let (X, Ω,≤) be an injective ordered space. Then (X, Ω) is a J -
injective object in T .

Proof. Suppose that f ∈ J , f : (Y, ΩY ) → (Z, ΩZ) and let g : Y → X be
continuous. If we order Y and Z as antichains (no two elements are comparable)
then f ∈ M and g turns out to be isotone. The injectivity of (X, Ω,≤) yields a
continuous (and isotone) map h : Z → X with hf = g. ¤
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Lemma 5. Let (X, Ω,≤) be an injective ordered space. Then ↑ Ω∪ ↓ Ω forms a
subbase of the topology Ω.

Proof. Choose A ∈ Ω, x ∈ A. We are going to find W ∈↑ Ω, V ∈↓ Ω such that
x ∈ W ∩V ⊆ A. Let us denote Ix = {M ∈↑Ω | x ∈ M}, Dx = {M ∈↓Ω | x ∈ M}.
We set Z = X ∪ {a, u}, where a, u /∈ X, a 6= u. It is easy to verify that

Ω′ ={B ⊆ Z | (B ∩X ∈ Ω) and (if u ∈ B then B ⊇ W ∩ V

for suitable W ∈ Ix, V ∈ Dx)}

is a T0-topology on Z and Ω is its relativization to X. Further, we define a partial
order ≤′ on Z by the rule

p ≤′ q iff (p, q ∈ X, p ≤ q) or (p ∈ {a, u}, q ∈ X, x ≤ q) or

(p = a, q = u) or p = q.

Let Ω′′ and ≤′′ be the relativizations of Ω′ and ≤′ to the set Y = X ∪ {a}. Now
we check that the embedding i : (Y, Ω′′,≤′′) → (Z, Ω′,≤′) belongs to M.

I. Let M ∈↑Ω′′. Then M = Y ∩M ′ for some M ′ ∈ Ω′. Since Y ∈ Ω′, we obtain
that M ∈ Ω′. Let us set

N =
{

M ∪ {u} if a ∈ M

M otherwise.

If a ∈ M then x ∈ M ⊇ {y ∈ Y | a ≤′′ y}, hence N = M ∪ {u} ⊇ (X ∩M) ∩X,
where X ∈ Dx, X ∩M ∈ Ix. In both cases we obtain that N ∈↑Ω′, M = N ∩ Y .

II.Let M ∈↓Ω′′. Again we have M ∈ Ω′. Let us set

N =
{

M ∪ {u} if u ≤′′ q for some q ∈ M

M otherwise.

We obtain that N ∈↓Ω′, M = N ∩ Y .
Now we can make use of the injectivity of (X, Ω,≤). Let us define f : Y → X

by the rule f(a) = x and f(p) = p for all p ∈ X. Clearly, f is continuous and
isotone. Thus, there exists a continuous isotone map g : Z → X with g(y) = f(y)
for all y ∈ Y . We obtain that x = g(a) ≤ g(u) ≤ g(x) = x. The continuity of g
yields g−1(A) ∈ Ω′. Since u ∈ g−1(A), the definition of Ω′ gives W ∈ Ix, V ∈ Dx

with g−1(A) ⊇ W ∩ V , hence W ∩ V = g(W ∩ V ) ⊆ A. ¤
Corollary 6. Let (X, Ω,≤) be an injective ordered space and let x, y ∈ X. If there
exists A ∈ Ω with x ∈ A, y /∈ A, then there exists also B ∈↑Ω∪ ↓Ω with x ∈ B,
y /∈ B. ¤
Lemma 7. Let (X, Ω,≤) be an injective ordered space and let x, y ∈ X. Suppose
that neither W ∈↑Ω with x ∈ W , y /∈ W nor V ∈↓Ω with y ∈ V , x /∈ V exists.
Then x ≤ y.

Proof. Let Z = X ∪ {u, v, w}, where u, v, w /∈ X. It is easy to verify that

Ω′ ={A ⊆ Z | (A ∩X ∈ Ω) and (x ∈ A implies {u,w} ⊆ A)

and (v ∈ A implies x ∈ A)}
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is a T0-topology on Z. Consider the partial order ≤′ on Z given by the rule

p ≤′ q iff (p, q ∈ X, p ≤ q) or (p ∈ {u, v, w}, y ≤ q ∈ X) or

(p = v, q = u) or (p = w, q ∈ {u, v}) or p = q.

The inclusion i : X → Z is obviously an embedding and we check that i ∈M.
I. Let M ∈↑ Ω. If x /∈ M then M ∈ Ω′. If x ∈ M then y ∈ M by our

assumptions. Let us set N = M ∪ {u, v, w}. We have N ∈↑Ω′, N ∩X = M .
II. Let M ∈↓ Ω. If x ∈ M then for N = M ∪ {u, v, w} we have N ∈↓ Ω′,

N ∩X = M . If x /∈ M then y /∈ M by our assumptions. We can set N = M .
Now the injectivity implies that there exists a continuous isotone map g : Z → X

such that gi = idX , i.e. g(p) = p for all p ∈ X. By way of contradiction, assume that
x � y. Since g is isotone, we have g(v) ≤ g(y) = y, hence g(v) 6= x. The existence
of W ∈ Ω with g(v) ∈ W , x /∈ W implies that g−1(W ) /∈ Ω′ and contradicts the
continuity of g. Since Ω is T0, there must be W ∈ Ω with x ∈ W , g(v) /∈ W .
By Corollary 6 we can assume that W ∈↑ Ω∪ ↓ Ω. From W ∈↓ Ω we get that
g(v) ≤ g(u) /∈ W . Further, W ∈↑ Ω implies that g(w) /∈ W . In both cases we
have x ∈ g−1(W ), {u,w} * g−1(W ), hence g−1(W ) /∈ Ω′, which contradicts the
continuity of g. ¤
Lemma 8. Every injective ordered space (X, Ω,≤) is isomorphic to an order sub-
space of a product of powers of the spaces S1 and S2.

Proof. Let us denote I = {1}× ↑Ω, J = {0}× ↓Ω. Let P be the Cartesian product

P =
∏

i∈I

S1 ×
∏

j∈J

S2

endowed with the usual product topology ΩP and the pointwise order ≤P . The
topology ΩP has a subbase B = {Bi | i ∈ I∪J}, where Bi =

∏
Aj with Aj = {0, 1}

for i 6= j and Ai = {n} for i = (n,A). We define a function f : X → P by the rule

f(x)(i) =
{

0 if (i = (0, A), x ∈ A) or (i = (1, A), x /∈ A);
1 if (i = (0, A), x /∈ A) or (i = (1, A), x ∈ A).

By Corollary 6, the map f is one-to-one. For i = (n,A) we have f−1(Bi) =
A ∈↑ Ω∪ ↓ Ω, hence f is continuous. Further, for every A ∈↑ Ω∪ ↓ Ω we have
f(A) = f(X) ∩ Bi, where i = (n,A). (If A ∈↑Ω∩ ↓Ω, we can choose n ∈ {0, 1}
arbitrarily.) Since ↑Ω∪ ↓Ω is a subbase of Ω, we have proved that f is a topological
homeomorphism X → f(X). Now we show that x ≤ y iff f(x) ≤P f(y). First,
let x ≤ y. For any A ∈↑Ω, B ∈↓Ω we have the implications (x ∈ A ⇒ y ∈ A)
and (x /∈ B ⇒ y /∈ B). That is why f(x)(i) = 0 or f(y)(i) = 1 holds for all i,
hence f(x) ≤P f(y). Conversely, assume that f(x) ≤P f(y). By the definition of
f , neither W ∈↑Ω with x ∈ W , y /∈ W nor V ∈↓Ω with x /∈ V , y ∈ V exists. Now
Lemma 7 yields x ≤ y.

It remains to show that f ∈ M. But this is clear, because for W ∈↑Ω, V ∈↓Ω
we have f(W ) = f(X) ∩ Bi, f(V ) = f(X) ∩ Bj , where i = (1,W ), j = (0, V ),
Bi ∈↑ΩP , Bj ∈↓ΩP . ¤

Putting together Lemmas 2, 3 and 8 we obtain the following result.
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Theorem 9. An ordered T0-space is injective if and only if it is a retract of a
product of powers of the spaces S1 and S2. ¤

Finally, we characterize injective ordered spaces in terms of continuous lattices.

Lemma 10. Let (X1, Ω1,≤1) and (X2, Ω2,≤2) be ordered T0-spaces satisfying the
following conditions:

(1) (X1,≤1) and (X2,≤2) contain least elements (we denote them by o1, o2);
(2) x ≤1 y iff (x ∈ A ∈ Ω1 implies y ∈ A);
(3) x ≤2 y iff (y ∈ A ∈ Ω2 implies x ∈ A).

Further, let us denote (X, Ω,≤) = (X1,Ω1,≤1)× (Xx, Ω2,≤2) and let f : X → X
be a continuous isotone map with ff = f . Then there exist continuos isotone
maps f1 : X1 → X1, f2 : X2 → X2 such that f1f1 = f1, f2f2 = f2 and
f(X) = f1(X1)× f2(X2).

Proof. Denote by p1 and p2 the projections of X onto X1 and X2, respectively. Let
e1 : X1 → X, e2 : X2 → X be defined by the rules e1(x) = (x, o2), e2(x) = (o1, x).
Obviously, the functions p1, p2, e1, e2 are continuous and isotone. Let us set
f1 = p1fe1, f2 = p2fe2. Thus, f1 and f2 are also continuous and isotone.

Let @ be the specialization order on X, i.e.

a @ b iff (a ∈ A ∈ Ω ⇒ b ∈ A).

Since Ω is the product topology, we have (x1, x2) @ (y1, y2) if and only if x1 ≤1 y1

and y2 ≤2 x2. Note that the continuous function f must preserve the relation @
(i.e. a @ b implies f(a) @ f(b)).

Now we show the equality p1(f(x, o2)) = p1(f(x, y)) for every x ∈ X1, y ∈ X2.
From x ≤1 x, o2 ≤2 y it follows that (x, y) @ (x, o2), hence f(x, y) @ f(x, o2).
From this we get p1(f(x, y)) ≤1 p1(f(x, o2)). On the other hand, (x, o2) ≤ (x, y),
hence p1(f(x, o2)) ≤1 p1(f(x, y)).

Analogously, p2(f(o1, x)) = p2(f(x, y)) holds for every x ∈ X1, y ∈ X2.
Now we obtain:

f1f1(x) = p1(f(p1(f(x, o2)), o2)) = p1(f(p1(f(x, o2)), p2(f(x, o2)))) =
p1(f(f(x, o2))) = p1(f(x, o2)) = f1(x),
hence f1f1 = f1. The proof of f2f2 = f2 is analogous.

Finally we show that f(X) = f1(X1)× f2(X2). If (x, y) ∈ f(X), then f(x, y) =
(x, y) and f1(x) = p1(f(x, o2)) = p1(f(x, y)) = p1(x, y) = x, hence x ∈ f1(X1) and
similarly y ∈ f2(X2). Conversely, if (x, y) ∈ f1(X1) × f2(X2) then p1(f(x, y)) =
p1(f(x, o2)) = f1(x) = x, p2(f(x, y)) = p2(f(o1, y)) = f2(y) = y, hence f(x, y) =
(x, y) ∈ f(X). ¤

If we set (X1, Ω1,≤1) =
∏

i∈I S1, (X2, Ω2,≤2) =
∏

j∈J S2, then the conditions
(1)-(3) in Lemma 10 are satisfied. It is easy to see that an object Y is a retract
of X in the category U if and only if it is isomorphic to f(X) for some continuous
isotone map f : X → X with ff = f . Thus, we obtain the following assertion.

Corollary 11. An ordered T0-space is injective if and only if it is isomorphic to
a product of retracts of the spaces

∏
i∈I S1 and

∏
j∈J S2 for suitable index sets I,

J . ¤
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Theorem 12. An ordered T0-space is injective if and only if it is isomorphic to
a product of a continuous lattice with its Scott topology and a dually continuous
lattice with its dual Scott topology.

Proof. We prove that retracts of spaces
∏

i∈I S1 are exactly continuous lattices with
their Scott topology.

Let (R, Ω,≤) be a retract of
∏

i∈I S1. By Lemma 4, (R, Ω) is J -injective in
T . Thus, Ω is the Scott topology of the continuous lattice (R, @), where @ is the
specialization order associated with Ω. This means that the relations ≤ and @
coincide.

Conversely, let (R,≤) be a continuous lattice and Ω its Scott topology. Then
(R, Ω) is J -injective in T . By Theorem 1, there exists a set I and continuous maps
f : R → ∏

i∈I S1, g :
∏

i∈I S1 → R with gf = idR. Both R and
∏

i∈I S1 are
ordered by the specialization order, so the continuous maps f and g are isotone.
This shows that (R, Ω,≤) is a retract of

∏
i∈I S1.

Similarly we can prove that retracts of spaces
∏

i∈I S2 are exactly dually con-
tinuous lattices endowed with their dual Scott topology. Our assertion now follows
from Corollary 11. ¤

Finally, let us mention the link of our results to order varieties of D. Duffus and
I. Rival. In [1], an order variety was defined as a class of ordered sets closed under
products ans retracts. The class of injective ordered spaces is closed under these
operators (and is generated by the 2-element set {S1, S2}). Hence, it can play an
important role in a classification of ordered spaces based on the concept of the order
variety.
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