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Abstract. In [1] R. Beazer characterized affine complete Stone algebras having
a smallest dense element. We remove this latter assumption and describe affine
complete algebras in the class of all Stone algebras.

1. Introduction.
An n-ary function f on an algebra AAA is called compatible if for any congruence θ

on AAA, ai ≡ bi (θ) (ai, bi ∈ A), i = 1, . . . , n yields f(a1, . . . , an) ≡ f(b1, . . . , bn) (θ).
It is clear that any polynomial function of AAA is compatible. Following H. Werner
[16], an algebra AAA is called affine complete if the polynomial functions of AAA are the
only compatible functions.

The problem of characterizing affine complete algebras was posed by G. Grätzer
in [7] (Problem 6). However, it seems hard to answer such a question in general.
In fact, every algebra is a reduct of some affine complete algebra, because we can
add all compatible functions to the fundamental operations. The problem was
reformulated by D. Clark and H. Werner in [3] in the following form: ”Characterize
affine complete algebras in your favourite variety.”

G. Grätzer in [5] proved that every Boolean algebra is affine complete and in
[6] he characterized affine complete bounded distributive lattices as those which do
not contain proper Boolean subintervals. In [3] one can find a list of particular
varieties in which all affine complete members were characterized. The list includes
the varieties of all sets, all vector spaces over a division ring, elementary abelian p-
groups for p-prime, p-rings, abelian groups and varieties generated by a semi-primal
algebra. Later on, the variety of semilattices was added to the list ([10]). The second
author recently ([15]) solved the problem for the variety of all distributive lattices
generalizing Grätzer’s result in [6]. The method developed in [15] is also used in
the present paper.

Much can be said about affine completeness in arithmetical varieties (see [12]
and [13]). Varieties of affine complete algebras have been examined in [11] where it
was shown that any affine complete variety is residually finite. For a survey of the
most recent results concerning affine complete varieties see [14].

2. Preliminaries.
First we recall some basic facts about Stone algebras. For the general background

on that topic see e.g. [8]. A Stone algebra is an algebra LLL = (L;∨,∧,? , 0, 1),
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where (L;∨,∧, 0, 1) is a bounded distributive lattice, ? is a unary operation of
pseudocomplementation, i.e. for any a ∈ L,

a? = max{x ∈ L : x ∧ a = 0}

and LLL satisfies the identity x? ∨ x?? = 1.
Two subsets of LLL play an important role. The subset B(LLL) = {x? : x ∈ L}

of all closed elements of LLL which is a Boolean subalgebra of LLL, and the subset
D(LLL) = {x ∈ L : x? = 0} of all dense elements of LLL which forms a filter in LLL. It
is easy to see that for any x ∈ L, the element x ∨ x? is dense. Any x ∈ L can be
expressed as a meet of closed and dense elements of LLL since the identity

x = x?? ∧ (x ∨ x?)

holds in any Stone algebra.
The class of all Stone algebras is a variety, generated by the 3-element chain

333 = {0, d, 1} with 0 < d < 1. In fact, any Stone algebra can be embedded in some
power of 333.

On any Stone algebra LLL, one can define the Glivenko congruence Φ by

x ≡ y (Φ) iff x? = y?.

It is easy to see that the factorization LLL/Φ produces a Boolean algebra isomorphic
to B(LLL).

Now we recall some notions from [15]. For an element x of a lattice L, let
↑x := {y ∈ L : x ≤ y} and let ↓x := {y ∈ L : y ≤ x}. A filter F of a
distributive lattice L is called relatively complete if for any x ∈ L there exists
min F ∩ ↑x = min{y ∈ F : y ≥ x}. The concept of a relatively complete ideal is
defined dually. A filter or an ideal of L is proper if it is not equal to the whole of
L. An interval of L is said to be proper if it has more than one element.

In [15], affine complete distributive lattices are characterized as follows:

2.1. Theorem ([15; 2.7]). A distributive lattice L is affine complete if and only
if the following conditions are satisfied:

(i) L does not contain a proper Boolean interval;
(ii) L does not contain a proper relatively complete ideal without a largest ele-

ment;
(iii) L does not contain a proper relatively complete filter without a smallest

element. ¤

It is easy to see that the condition (ii) is satisfied whenever L has a largest
element. Similarly, the existence of a smallest element of L implies (iii). Thus,
a bounded distributive lattice is affine complete iff it does not contain a proper
Boolean interval (see [6; Theorem]).

In our investigations we shall also use some preliminary results from [15]. Because
the proofs of the following two lemmas are rather short, we repeat them here to
make this paper sufficiently self-content.
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2.2. Lemma ([15; 2.4]). Let f : L −→ L be a unary compatible function on a
distributive lattice L. Let x ∈ L. If there exists y ∈ L such that x ≤ y and x ≤ f(y),
then the set ↑x is closed under f . Dually, if x ≥ y and x ≥ f(y) for some y ∈ L,
then the set ↓x is closed under f .

Proof. Let y ∈ L be such that x ≤ y and x ≤ f(y). Suppose to the contrary that
z ∈ ↑x and f(z) /∈ ↑x. Then there exists a prime ideal I such that x /∈ I and
f(z) ∈ I. Let θ be the congruence on L with the classes I and L\I. Then (y, z) ∈ θ
while (f(y), f(z)) /∈ θ, a contradiction. ¤
2.3. Corollary ([15; 2.5]). If the set ↓x or ↑x contains a fixed point of f , then
it is closed under f . ¤
2.4. Lemma ([15; 2.6]). Let f : L −→ L be a compatible function on a distributive
lattice L. Suppose that L does not contain a proper Boolean interval. Then (i)
f ◦ f = f ; (ii) the set ↓f(L) =

⋃
x∈L ↓f(x) is a relatively complete ideal in L.

Proof. (i) Take any x ∈ L. By 2.2, the sets ↑(x∧f(x)) and ↓(x∨f(x)) are closed
under f , hence the interval J = [x ∧ f(x), x ∨ f(x)] is closed under f . Obviously,
the function g = f ¹ J is compatible on the lattice J . Since, by 2.1, J is affine
complete, we have g(y) = (a ∨ y) ∧ b for some a, b ∈ J such that a ≤ b. Now one
can easily verify that g(g(y)) = g(y) for any y ∈ J . Since x ∈ J and f(x) ∈ J , we
finally get f(f(x)) = g(g(x)) = g(x) = f(x).

(ii) First we show that max(↓f(L) ∩ ↓x) exists for any x ∈ L and is equal to
x∧ f(x). Clearly, x∧ f(x) ∈ ↓f(L)∩↓x. Now take arbitrary y ∈ ↓f(L)∩↓x. Since
y ∈ ↓f(L), the set ↑y contains an element of f(L), i.e. a fixed point of f . By 2.3, the
set ↑y is closed under f, hence y ≤ x implies that y ≤ f(x). Therefore y ≤ x∧ f(x),
what was to be proved. To show that ↓f(L) is closed under joins, let a, b ∈ ↓f(L).
Then a, b ≤ max(↓f(L) ∩ ↓(a ∨ b)) ≤ a ∨ b, hence max(↓f(L) ∩ ↓(a ∨ b)) = a ∨ b,
whence a ∨ b ∈ ↓f(L). ¤

Finally, the following result from [4] will be useful:

2.5. Theorem ([4; Theorem 4]). Let L be a distributive lattice. Then every
compatible function on L is order-preserving if and only if L does not contain a
proper Boolean interval.

3. Affine completeness.

R. Beazer in [1] characterized affine complete Stone algebras having a smallest
dense element:

3.1. Theorem ([1; Theorem 4]). Let LLL be a Stone algebra having a smallest dense
element. Then the following are equivalent.

(1) LLL is affine complete;
(2) D(LLL) is an affine complete lattice;
(3) no proper interval of D(LLL) is Boolean. ¤

He also asked a question whether the conditions (1) and (2) are equivalent in
any Stone algebra.

In this section we generalize Beazer’s result to the variety of all Stone algebras
and we provide an example of a Stone algebra for which the conditions (1) and (2)
in 3.1 are not equivalent.
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3.2. Lemma. Let LLL be a Stone algebra and f, g : Ln −→ L be compatible functions
on LLL. If f = g on ({0} ∪D(LLL))n then f = g on the whole Ln.

Proof. For a contradiction, suppose that f = g on ({0} ∪D(LLL))n and f(c̃) 6= g(c̃)
for some c̃ = (c1, . . . , cn) ∈ Ln. Then there exists a Stone homomorphism h : L −→
333 = {0, d, 1}. such that h(f(c̃)) 6= h(g(c̃)). Let θ be the kernel congruence of h,
i.e. x ≡ y (θ) iff h(x) = h(y). Further, define b̃ = (b1, . . . , bn) ∈ Ln by

bi =
{

0 if h(ci) = 0,

ci ∨ c∗i otherwise.

It is clear that h(ci) = h(bi) for every i = 1, . . . , n. (If h(ci) = d then h(bi) = d∨d∗ =
d ∨ 0 = d.) Since the functions f and g are compatible, they preserve θ and we
obtain that h(f(c̃)) = h(f(b̃)) and h(g(c̃)) = h(g(b̃)). Clearly, b̃ ∈ ({0} ∪D(LLL))n,
which implies that f(b̃) = g(b̃) and hence h(f(c̃)) = h(g(c̃)), a contradiction. ¤

The following generalization of affine completeness turns out to be useful in our
considerations. Let BBB be a subalgebra of an algebra AAA. We say that BBB is affine
complete in AAA if for every compatible function f of BBB there exists a polynomial
p of AAA such that f = p ¹ BBB. In other words, BBB is affine complete in AAA if every
compatible function on BBB is a polynomial with constants taken from AAA. It is clear
that an algebra is affine complete iff it is affine complete in itself.

Now we present the main result of our paper.

3.3. Theorem. Let LLL be a Stone algebra. Then the following conditions are
equivalent:

(1) LLL is affine complete;
(2) D(LLL) is affine complete in the lattice L;
(3) (B) D(LLL) does not contain a proper Boolean interval;

(F) for any relatively complete filter F in D(LLL) there exists a ∈ L such that
F = ↑a ∩D(LLL).

Proof. (1) =⇒ (3) To show (B), suppose that [a, b] ⊆ D(LLL) is a proper Boolean
interval. Define a function f : D(LLL) −→ [a, b] by f(x) = ((x ∨ a) ∧ b)′, where ′

means the complement in [a, b]. One can easily verify that f is compatible on D(LLL).
Now we define an extension g : L −→ [a, b] of f by g(x) = f(x ∨ x?). It is again
easy to see that g is a compatible function of the Stone algebra LLL. By hypothesis,
g is a polynomial function of LLL, i.e. there exist α0, . . . , α3 ∈ L such that

g(x) = α0 ∨ (α1 ∧ x) ∨ (α2 ∧ x?) ∨ (α3 ∧ x??)
for any x ∈ L (see also [1; Lemma 1]). Hence, for any x ∈ D(LLL),

f(x) = g(x) = α0 ∨ α3 ∨ (α1 ∧ x),
which is obviously an order-preserving function. But f(b) = a < b = f(a), a
contradiction.

To show (F), suppose that F is a relatively complete filter in D(LLL), i.e. for
any x ∈ D(LLL) there exists min F ∩ ↑x. Define a function f : D(LLL) −→ D(LLL) by
f(x) = min F ∩ ↑x. Note that F is the set of all fixed points of f . We claim that
f is compatible on D(LLL). Let θ be a congruence of D(LLL) and x ≡ y (θ), x ≥ y.
We show that f(x) = x ∨ f(y). Obviously, f(x) ≥ x ∨ f(y). On the other hand,
f(y) ∈ F , therefore x ∨ f(y) ∈ F ∩ ↑x, thus f(x) ≤ x ∨ f(y). So we have

f(x) = x ∨ f(y) ≡ y ∨ f(y) = f(y) (θ).
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We again define a compatible extension g : L −→ D(LLL) of f by g(x) = f(x ∨ x?).
In the same way as above, there exist a, b ∈ L such that f(x) = a ∨ (b ∧ x) for any
x ∈ D(LLL). Obviously, we can assume that a ≤ b. We show that F = ↑a ∩D(LLL).
If x ∈ ↑a ∩D(LLL), then b ∧ x = f(x) ∈ F , i.e. x ∈ F . Conversely, if x ∈ F then
x = f(x) = a ∨ (b ∧ x), thus a ≤ x, whence x ∈ ↑a ∩D(LLL).

(3) =⇒ (2) Let g : D(LLL)n −→ D(LLL) be a compatible function of the lattice
D(LLL). We show that g can be represented by a polynomial of the lattice L.

1. Let n = 1. By the dual assertion to 2.4(ii), ↑g(D(LLL)) is a relatively complete
filter in D(LLL). So by (F) there exists a ∈ L such that ↑g(D(LLL)) = ↑a ∩ D(LLL).
¿From (B) by using 2.4(i) it follows that g(x) is a fixed point of g for any x ∈ D(LLL).
Therefore by 2.3, the set ↑(x∧g(1)) is closed under g. Further, a∨x ∈ ↑a∩D(LLL) =
↑g(D(LLL)), hence a ∨ x ≥ g(y) for some y ∈ D(LLL). Because g(y) is a fixed point
of g, ↓(a ∨ x) is closed under g. Since x ∈ ↓(a ∨ x) ∩ ↑(x ∧ g(1)), we have that
g(x) ∈ ↓(a ∨ x) ∩ ↑(x ∧ g(1)). Further, g(x) ∈ ↑a as g(x) ∈ ↑g(D(LLL)) , and
g(x) ∈ ↓g(1) because g is order-preserving on D(LLL) by (B) and 2.5. Hence

g(x) ∈ ↓((a ∨ x) ∧ g(1)) ∩ ↑(a ∨ (x ∧ g(1)),
thus g(x) = (a ∨ x) ∧ g(1), which is a polynomial of the lattice L.

2. Now let n > 1. For every subset S ⊆ {1, . . . , n} = n we define a unary
function gS : D(LLL) −→ D(LLL) by gS(x) = g(y1, . . . , yn) where

yi =
{

1 if i ∈ S,

x if i /∈ S.

Thus gn is a constant function equal to g(1, . . . , 1). Obviously, any gS is a com-
patible function of D(LLL), hence by case 1 there exists a constant aS ∈ L such
that

gS(x) = (aS ∨ x) ∧ gS(1).

We take an = g(1, . . . , 1). Further, we show that the constants aS can be chosen in
such a way that aT ≤ aS whenever T ⊆ S. The constant aT can be any element of
L satisfying ↑gT (D(LLL)) = ↑aT ∩D(LLL). We claim that if aT has this property then
the element bT =

∧
S⊇T aS has it too. Clearly, ↑gT (D(LLL)) ⊆ ↑bT ∩D(LLL). Since the

function g is order-preserving by 2.5, we have ↑gT (D(LLL)) ⊇ ↑gS(D(LLL)) = ↑aS∩D(LLL)
for every S ⊇ T . If x ∈ ↑bT ∩D(LLL) then x ≥ bT and clearly x =

∧
S⊇T (x∨aS). For

every S ⊇ T the element x∨aS belongs to ↑aS∩D(LLL), therefore x∨aS ∈ ↑gT (D(LLL)).
Since ↑gT (D(LLL)) is a filter by (the dual to) 2.4, we obtain x ∈ ↑gT (D(LLL)). Hence,
↑gT (D(LLL)) = ↑bT ∩ D(LLL) and we can take bT instead of aT . So we assume that
aT ≤ aS whenever T ⊆ S.

We define a lattice polynomial p(x1, . . . , xn) as follows:

p(x1, . . . , xn) =
∨

S⊆n

(aS ∧
∧

i∈S

xi).

We prove that g and p coincide on D(LLL)n. First we show that for any S ⊆ n the
functions gS and pS coincide, where pS : D(LLL) −→ D(LLL) is defined by pS(x) =
p(y1, . . . , yn) with

yi =
{

1 if i ∈ S,

x if i /∈ S.
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But it is clear that for any x ∈ D(LLL) , S 6= n

pS(x) =
∨

T⊆S

aT ∨
∨

T*S

(aT ∧ x) = aS ∨ (an ∧ x) = gS(x).

Moreover, both gn and pn are constant functions equal to an. Hence pS and gS

coincide for any S.
Suppose to the contrary that there exists c̃ = (c1, . . . , cn) ∈ D(LLL)n such that

g(c̃) 6= p(c̃). Then there exists a lattice homomorphism h : D(LLL) −→ 222 = {0, 1}
with h(g(c̃)) 6= h(p(c̃)). Obviously, h(1) = 1 and h(b) = 0 for some b ∈ D(LLL). Let
S = {i ∈ n : h(ci) = 1} and let b̃ = (b1, . . . , bn) ∈ D(LLL)n be such that bi = 1 if
i ∈ S, and bi = b if i /∈ S. Then h(ci) = h(bi) for every i ∈ n. The compatible
functions p and g preserve the kernel congruence of h, hence h(g(c̃)) = h(g(b̃)) and
h(p(c̃)) = h(p(b̃)). Since g(b̃) = gS(b) = pS(b) = p(b̃), we obtain that h(g(c̃)) =
h(p(c̃)), a contradiction.

(2) =⇒ (1) Let f : Ln −→ L be a compatible function of the Stone algebra LLL.
Since LLL satisfies the identity x = x?? ∧ (x ∨ x?), we can write

f(x̃) = f(x̃)?? ∧ (f(x̃) ∨ f(x̃)?)

for any x̃ = (x1, . . . , xn) ∈ Ln. We shall show that instead of f(x̃)?? and f(x̃)∨f(x̃)?

we can write in this formula some polynomials of the algebra LLL.
Since xi ≡ x??

i (Φ) and f preserves the Glivenko congruence Φ, we have f(x̃)?? =
f(x??

1 , . . . , x??
n )??. Define a function h : B(LLL)n −→ B(LLL) by h(x̃) = f(x̃)??. We

show that h is compatible on the Boolean algebra B(LLL). For any congruence θB of
B(LLL) we define a relation θL on L by

x ≡ y (θL) iff x?? ≡ y?? (θB).

Because of the identities (x ∨ y)?? = x?? ∨ y?? and (x ∧ y)?? = x?? ∧ y??, θL is
a congruence of the Stone algebra LLL and θB is its restriction to B(LLL). Hence for
any xi, yi ∈ B(LLL) (i = 1, . . . , n), xi ≡ yi (θB) implies that xi ≡ yi (θL), thus
f(x̃) ≡ f(ỹ) (θL). Therefore h(x̃) = f(x̃)?? ≡ f(ỹ)?? = h(ỹ) (θB), which shows
that h is compatible. Since any Boolean algebra is affine complete, there exists a
polynomial b(x1, . . . , xn) of B(LLL) representing h. Hence for any x̃ = (x1, . . . , xn) ∈
Ln we have f(x̃)?? = f(x??

1 , . . . , x??
n )?? = h(x??

1 , . . . , x??
n ) = b(x??

1 , . . . , x??
n ), which

is a polynomial of the algebra LLL, because the complement operation in b can be
expressed by ?.

To represent the function f(x̃)∨ f(x̃)? by a polynomial of LLL, we prove that any
compatible function on LLL whose range is a subset of D(LLL) is a polynomial function
of LLL. Let g : Ln −→ D(LLL) be compatible on LLL. Note that any lattice congruence
θD of D(LLL) can be extended to a Stone congruence θL ∩ Φ of LLL where θL is any
extension of θD to the lattice L. Therefore the function g ¹ D(LLL)n is compatible
on the lattice D(LLL). By hypothesis we have then a polynomial l(x̃) of the lattice L
such that g(x̃) = l(x̃) for all x̃ ∈ D(LLL)n. To represent g by a polynomial of LLL, we
proceed by induction on the arity n of g:
1. Let n = 1. We show that

g(x) = (x?? ∧ l(x)) ∨ (x? ∧ g(0)).
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By 3.2, it suffices to show that both sides are equal on {0} ∪ D(LLL), which is
obvious.
2. Let n > 1. We show using 3.2 again that

g(x1, . . . , xn) = (x??
1 ∧ · · · ∧ x??

n ∧ l(x1, . . . , xn)) ∨ (x?
1 ∧ x??

2 ∧ · · · ∧ x??
n ∧

g(0, x2, . . . , xn)) ∨ · · · ∨ (x??
1 ∧ · · · ∧ x??

n−1 ∧ x?
n ∧ g(x1, . . . , xn−1, 0)) ∨

(x?
1 ∧ x?

2 ∧ x??
3 ∧ · · · ∧ x??

n ∧ g(0, 0, x3, . . . , xn)) ∨ · · · ∨ ((x?
1 ∧ · · · ∧ x?

n ∧ g(0, . . . , 0)).
Both sides are equal on ({0} ∪D(LLL))n, and by the induction hypothesis we have
on the right side a polynomial of the algebra LLL.

Hence, the function g(x̃) = f(x̃) ∨ f(x̃)? : Ln −→ D(LLL) which is compatible
on LLL can also be represented by a polynomial of the algebra LLL. The proof is
complete. ¤

Algebras of which all unary compatible functions are polynomial are called
1-affine complete (see [4]). From the proof above it can be deduced the follow-
ing statement:

3.4. Corollary. Let LLL be a Stone algebra. Then LLL is affine complete iff LLL is
1-affine complete. ¤

Note that if a Stone algebra LLL has a smallest dense element then the condition
(2) in 3.3 is equivalent to (2) of 3.1 while the condition (F) is trivially satisfied.
Hence Beazer’s result easily follows from 3.3.

Let us mention a weaker form of affine completeness which can be found in the
literature. An algebra AAA is said to be locally affine complete if for every n ≥ 1,
every n-ary compatible function on AAA can be interpolated on any finite subset
F ⊂ An by a polynomial of AAA (see e.g. [10]). Clearly, every affine complete algebra
is locally affine complete, and for finite algebras both concepts coincide. Locally
affine complete distributive lattices have been characterized in [4]:

3.5. Theorem ([4; Corollary 1 on p. 102]). A distributive lattice L is locally
affine complete if and only if L does not contain a proper Boolean interval. ¤

A characterization of locally affine complete Stone algebras has been presented
in [9]:

3.6. Theorem ([9; Theorem 2]). Let LLL be a Stone algebra. The following are
equivalent.

(1) LLL is locally affine complete;
(2) D(LLL) is locally affine complete lattice;
(3) no proper interval of D(LLL) is Boolean. ¤

We close this paper with several examples illustrating the results above.

3.7. Examples.

(1) Take the interval [0, 1] of the real numbers and put L = [0, 1]2. Evidently, LLL
is a Stone algebra with D(LLL) = (0, 1]2. Since for any a ∈ L\D(LLL), F = ↑a∩D(LLL)
is a relatively complete filter in D(LLL) without a smallest element, D(LLL) is not affine
complete by 2.1. On the other hand, one can verify that LLL satisfies the conditions
(B) and (F) of 3.3. Hence, LLL is an affine complete Stone algebra, which also provides
a negative answer to Beazer’s question in [1].

(2) Any Stone algebra obtained by adding a new zero to an affine complete
distributive lattice with unit is evidently affine complete.
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(3) Consider the Stone algebra LLL = {0} ∪ (R× R) ∪ {1} . Let

F = {(x, y) ∈ L : x ≥ 0} ∪ {1}.
Obviously, F is a relatively complete filter in D(LLL) and there is no a ∈ L such that
F = ↑a ∩ D(LLL). Hence LLL is not affine complete. On the other hand, LLL is locally
affine complete by 3.6.
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