
A NATURAL REPRESENTATION OF BOUNDED LATTICES

MIROSLAV PLOŠČICA

Abstract. We establish a new representation theory for bounded lattices,
which generalizes the well known Priestley duality. Our basic tool is the con-

cept of a maximal partial homomorphism.

There exist several representation theories for lattices. Well known is the Priest-
ley duality for bounded distributive lattices (cf. [4]). This duality is natural in the
sense of B. A. Davey and H. Werner ([1]). For obvious reasons, it is impossible to
build a natural duality for the variety of all bounded lattices. In our representation
we try to preserve as much from the natural dualities theory as possible.

Our theory has common points with other representation theories for lattices. It
is especially close to A. Urquhart’s theory developed in [5]. In fact, in both cases
the dual spaces have the same elements and the same topology, but they differ in
relational structure. Our choice of relational structure seems to be the most natural
from the point of view of natural dualities.

1. The representation theorem

We work with bounded lattices as algebras of the signature (2,2,0,0). A partial
map f : L1 −→ L2 between bounded lattices is called a partial homomorphism
if its domain dom(f) is a 0,1-sublattice of L1 and the restriction f � dom(f) is
a bounded lattice homomorphism. A partial homomorphism is called maximal
(MPH, for short), if there is no partial homomorphism properly extending it. Let
us notice that by the Zorn’s lemma, every homomorphism can be extended to a
MPH.

Let 2 denote the 2-element lattice with elements 0, 1. For any bounded lattice
L, let D(L) be the set of all MPH’s L −→ 2 equipped with the binary relation E
defined by the rule

(f, g) ∈ E iff f(x) ≤ g(x) for every x ∈ dom(f) ∩ dom(g)

and with the topology τ whose subbasis of closed sets consists of all sets of the form
Ax = {f | f(x) = 0} and Bx = {f | f(x) = 1} (x ∈ L).

It is easy to prove that if the lattice L is distributive, then any MPH L −→ 2
is a total map (its domain is the whole L), E is a partial ordering and D(L) is the
usual dual space corresponding to L in the Priestley duality.

There is another way how to regard MPH’s. It is easy to see that MPH’s L −→ 2
correspond to so called maximal filter-ideal pairs in L. If F is a filter and I is an
ideal in L such that F ∩ I = ∅, then (F, I) is called a filter-ideal pair. Such a pair
is said to be maximal, if neither F nor I can be enlarged without breaking the
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disjointness. For any MPH f : L −→ 2 the pair (f−1(1), f−1(0)) is maximal; for
any maximal pair (F, I) the partial map f : L −→ 2 defined by

f(x) =


0 if x ∈ I,
1 if x ∈ F,
undefined otherwise

is a MPH. If we regard D(L) as the set of all maximal filter-ideal pairs, then

((F, I), (G, J)) ∈ E iff F ∩ J = ∅.
Further, Ax = {(F, I) |x ∈ I}, Bx = {(F, I) |x ∈ F}.

Hence, for every bounded lattice L, its dual space D(L) is a set equipped with
a reflexive binary relation and a topology. Any object of this type will be called a
topological graph. We keep the reflexivity assumption throughout the paper.

Now we decribe how to reconstruct a lattice from its dual space. A map ϕ :
(X1, E1, τ1) −→ (X2, E2, τ2) between topological graphs is called morphism if it
preserves the binary relation (that is (x, y) ∈ E1 implies (ϕ(x), ϕ(y)) ∈ E2) and
if it is continuous with respect to τ1 and τ2. A partial map ϕ : (X1, E1, τ1) −→
(X2, E2, τ2) is called a partial morphism if its domain is a τ1-closed subset of X1

and the restriction of ϕ to its domain is a morphism. (We assume that dom(ϕ)
inherits the binary relation and the topology fromX1.) A partial morphism is called
maximal (MPM, for short), if there is no partial morphism properly extending it.

Let 2̃ denote the set {0, 1} equipped with the discrete topology and the binary
relation ≤ (0 < 1). Hence, 2̃ is a topological graph.

Lemma 1.1. Let L be a bounded lattice and h : L −→ 2 a MPH. If x ∈ L is such
that x /∈ h−1(0), then there is a MPH k : L −→ 2 such that h−1(0) ⊆ k−1(0) and
k(x) = 1.

Proof. The partial map k′ : L −→ 2 defined by

k′(y) =


0 if y ∈ h−1(0),
1 if y ≥ x,

undefined otherwise

is a partial homomorphism and can be extended to a MPH k, which obviously has
the required properties. �

Lemma 1.2. For every bounded lattice L and any x ∈ L, the evaluation function
ex : D(L) −→ 2̃ defined by

ex(f) =

{
f(x) if x ∈ dom(f),
undefined otherwise

is a MPM.

Proof. Clearly, f ∈ dom(ex) iff x ∈ dom(f), hence dom(ex) = Ax ∪ Bx, which is a
closed set. Since the sets Ax = e−1

x (0) and Bx = e−1
x (1) are closed, the restriction

of ex to its domain is continuous.
Further, Let f, g ∈ dom(ex), (f, g) ∈ E. We have to show that ex(f) ≤ ex(g), or

f(x) ≤ g(x). But this follows directly from the definition of E.
It remains to prove the maximality of ex. Let ϕ : D(L) −→ 2̃ be a partial

morphism, ex ⊆ ϕ. Let h : L −→ 2 be a MPH such that h /∈ dom(ex), that is
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x /∈ dom(h). We have to show that h /∈ dom(ϕ). By 1.1, there is a MPH h0 such that
h−1

0 (0) ⊇ h−1(0), h0(x) = 1. Similarly we can find a MPH h1 with h−1
1 (1) ⊇ h−1(1),

h1(x) = 0. Now clearly (h0, h) ∈ E, (h, h1) ∈ E and h0, h1 ∈ dom(ex) ⊆ dom(ϕ).
Hence, h ∈ dom(ϕ) would imply ϕ(h0) ≤ ϕ(h) ≤ ϕ(h1), which is impossible because
ϕ(h0) = ex(h0) = h0(x) = 1 and ϕ(h1) = ex(h1) = h1(x) = 0. �

It is easy to see that the topology of D(L) is always T1. Moreover, this topology
is always compact. (See [5, Lemma 6] for the proof.)

Lemma 1.3. Suppose that X̃ = (X,E, τ) is a topological graph equipped with a
T1-topology τ . Let ϕ be a MPM X̃ −→ 2̃. Then

(i) ϕ−1(0) = {x ∈ X | there is no y ∈ ϕ−1(1) with (y, x) ∈ E};
(ii) ϕ−1(1) = {x ∈ X | there is no y ∈ ϕ−1(0) with (x, y) ∈ E}.

Proof. We prove (i). If x ∈ ϕ−1(0), then for every y ∈ ϕ−1(1) we have 1 = ϕ(y) �
ϕ(x) = 0. Since ϕ preserves E, we obtain (y, x) /∈ E.

To prove the other inclusion, suppose that x ∈ X is such that there is no y ∈
ϕ−1(1) with (y, x) ∈ E. Then ϕ ∪ {(x, 0)} is a partial morphism. (Its continuity
follows from the fact that the topology τ is T1 and therefore the set {x} is closed.)
The maximality of ϕ yields that ϕ(x) = 0. �

Lemma 1.4. Let L be a bounded lattice, ϕ : D(L) −→ 2̃ a maximal partial
morphism and x ∈ L. Then

(i) ϕ−1(0) ∩Bx = ∅ implies ϕ−1(0) ⊆ Ax;
(ii) ϕ−1(1) ∩Ax = ∅ implies ϕ−1(1) ⊆ Bx.

Proof. It is enough to prove (i). Suppose that there is a MPH r with r /∈ Ax (that
is r(x) = 1 or r(x) is undefined) and ϕ(r) = 0. By 1.1 there exists a MPH p such
that r−1(0) ⊆ p−1(0) and p(x) = 1, hence p ∈ Bx. Further, for every s ∈ ϕ−1(1)
we have (s, r) /∈ E, because ϕ(s) � ϕ(r). Hence s−1(1) ∩ r−1(0) 6= ∅ and then also
s−1(1)∩p−1(0) 6= ∅, which means that (s, p) /∈ E. By 1.3, p ∈ ϕ−1(0)∩Bx 6= ∅. �

Lemma 1.5. Let L be a bounded lattice. Then every MPM ϕ : D(L) −→ 2̃ is of
the form ex for some x ∈ L.

Proof. Let ϕ be a MPM. For every p ∈ ϕ−1(0), q ∈ ϕ−1(1) we have (q, p) /∈ E, hence
there is xqp ∈ L with q(xqp) = 1, p(xqp) = 0. The set Xq

p = {r ∈ D(L) | r(xqp) 6= 0} is
open and the family Ap = {Xq

p | q ∈ ϕ−1(1)} covers the set ϕ−1(1) because q ∈ Xq
p .

Since the set ϕ−1(1) is compact (it is a closed subset of the compact space D(L)),
there are x1, . . . , xn ∈ p−1(0) such that ϕ−1(1) ⊆

⋃n
i=1{r ∈ D(L) | r(xi) 6= 0}. Let

us set xp =
∨n
i=1 xi. Then p(xp) = 0 and ϕ−1(1) ⊆ {r ∈ D(L) | r(xp) 6= 0}. By

1.4, ϕ−1(1) ⊆ {r ∈ D(L) | r(xp) = 1}. The compact set ϕ−1(0) is covered by the
open sets of the form {r ∈ D(L) | r(xp) 6= 1}, where p ∈ ϕ−1(0). Hence, there are
x1, . . . , xm ∈ L with ϕ−1(0) ⊆

⋃m
i=1{r ∈ D(L) | r(xi) 6= 1} and ϕ−1(1) ⊆

⋂m
i=1{r ∈

D(L) | r(xi) = 1}. Let us set x =
∧m
i=1 x

i. Then ϕ−1(1) ⊆ {r ∈ D(L) | r(x) = 1}
and ϕ−1(0) ⊆ {r ∈ D(L) | r(x) 6= 1}. From 1.4 we obtain that ϕ−1(0) ⊆ {r ∈
D(L) | r(x) = 0}. Hence, ϕ ⊆ ex and the maximality of ϕ yields ϕ = ex. �

The lemmas 1.2 and 1.5 establish a correspondence between elements of L and
MPM’s D(L) −→ 2̃. In order to reconstruct the lattice L from its dual space we
need to introduce the lattice operations on the set of all MPM’s. This is not a
problem in the Priestley duality for distributive lattices (or in any other natural
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duality). If L is distributive, then all MPM’s D(L) −→ 2̃ are total maps and
the lattice operations can be defined pointwise. In general however, if X̃ is any
topological graph and ϕ, ψ : X̃ −→ 2̃ are MPM’s, then the pointwise meet ϕ ∧ ψ
(defined on dom(ϕ)∩ dom(ψ)) is a partial morphism, but not necessarily maximal.
And, even if X̃ is a dual space of some lattice, the maximal extension of ϕ∧ψ need
not be unique. But, fortunately, we are able to recover the order relation of L.

Lemma 1.6. Let L be a bounded lattice. For elements x, y ∈ L the following
conditions are equivalent:

(i) x ≤ y;
(ii) e−1

x (0) ⊇ e−1
y (0);

(iii) e−1
x (1) ⊆ e−1

y (1).

Proof. If x ≤ y then, for every MPH f : L −→ 2, f(x) = 1 implies f(y) = 1 and
f(y) = 0 implies f(x) = 0. Hence, (i) implies (ii) and (iii). Conversely, if x � y,
then there exists a MPH f with f(x) = 1 and f(y) = 0, hence e−1

x (0) + e−1
y (0) and

e−1
x (1) * e−1

y (1). �

As a consequence we obtain our representation theorem.

Theorem 1.7. Any bounded lattice L is isomorphic to the set of all MPM’s
D(L) −→ 2̃ ordered by the rule ϕ ≤ ψ iff ϕ−1(1) ⊆ ψ−1(1).

Our way of reconstructing a lattice from its dual space is similar to the meth-
ods used in the formal concept analysis of R. Wille ([7]). If L is a finite lattice,
then we can consider the triple (D(L), D(L),−E) as a context (using the termi-
nology from [7]), where −E is the complement of the relation E. It is easy to see
that the concepts connected with this context are precisely the pairs of the form
(ϕ−1(1), ϕ−1(0)), where ϕ is any MPM D(L) −→ 2̃. By 1.7, any finite lattice is
isomorphic to the concept lattice of the context (D(L), D(L),−E). The generaliza-
tion to the infinite case cannot be straightforward, since concept lattices are always
complete. There is a representation theory of G. Hartung ([2]), where the notion
of a topological context was introduced in order to represent all bounded lattices.
The relationship between Hartung’s theory and our representation is essentially
explained in [2], since this paper discusses Urquhart’s representation, which is very
close to our theory.

We close this section with one example, which shows how our representation
works. Let L be the lattice depicted in Figure 1. Its dual space is drawn in Figure
2. The arrows indicate the relation E, the topology is discrete. The transition
between L and D(L) is described by the table in Figure 3. In this table, the rows
are MPH’s L −→ 2 and the columns are MPM’s D(L) −→ 2̃ (iėėvaluation maps
corresponding to the elements of L). This example also illustrates the remark
preceding 1.6. The pointwise meet ex ∧ ez defined on dom(ex) ∩ dom(ez) = {f, g}
is a partial morphism whose extension to a MPM is not unique.



A NATURAL REPRESENTATION OF BOUNDED LATTICES 5

x

0

zy

v w

1

@
@
@@ �

�
��

��

��

��

@@

@@@@

i h

f g

? ?
-

��� �- ����
�� �
-

���
�

Figure 1 Figure 2

i 0 − 1 0 1 1 1
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g 0 0 0 1 0 1 1
f 0 1 0 0 1 0 1

0 x y z v w 1

Figure 3

2. Urquhart’s representation

A. Urquhart in [5] introduced two binary (quasiorder) relations ≤1, ≤2 on the
set of all MPH’s L −→ 2 as follows:
f ≤1 g iff f−1(1) ⊆ g−1(1);
f ≤2 g iff f−1(0) ⊆ g−1(0).
So his dual of a lattice L is the set of all MPH’s L −→ 2 equipped with ≤1, ≤2 and
the same topology τ as in our representation.

Theorem 2.1. Let L be a bounded lattice and let f , g be MPH’s L −→ 2. Then
(i) (f, g) ∈ E iff there is a MPH h with f ≤1 h and g ≤2 h;
(ii) f ≤2 g iff there is no MPH h with (h, g) ∈ E and (h, f) /∈ E;
(iii) f ≤1 g iff there is no MPH h with (g, h) ∈ E and (f, h) /∈ E.

Proof. (i) If (f, g) ∈ E then f−1(1)∩g−1(0) = ∅. The filter-ideal pair (f−1(1), g−1(0))
can be extended to a MPH h for which we have f−1(1) ⊆ h−1(1) and g−1(0) ⊆
h−1(0). Conversely, if f ≤1 h, g ≤2 h, then f−1(1)∩ g−1(0) ⊆ h−1(1)∩h−1(0) = ∅,
hence (f, g) ∈ E.

(ii) Let f ≤2 g. Then for any MPH h with (h, g) ∈ E we have h−1(1)∩g−1(0) = ∅,
which implies that h−1(1) ∩ f−1(0) = ∅, hence (h, f) ∈ E. Conversely, if f−1(0) *
g−1(0) then we have x ∈ f−1(0) \ g−1(0) and by 1.1 there exists a MPH h with
g−1(0) ⊆ h−1(0) and h(x) = 1. Clearly, (h, g) ∈ E, (h, f) /∈ E.

The proof of (iii) is similar to (ii). �

In order to recover a lattice from its dual space, Urquhart introduces the following
concepts.

Let L be a bounded lattice. For a set Y ⊆ D(L) we define
l(Y ) = {f ∈ D(L) | there is no g ∈ Y with f ≤1 g};
r(Y ) = {f ∈ D(L) | there is no g ∈ Y with f ≤2 g}.
The set Y is called stable if Y = lr(Y ). The set Y is called doubly closed if
both Y and r(Y ) are (topologically) closed. Notice that the operators r and l are
inclusion-reversing, that is Y ⊆ Z implies r(Y ) ⊇ r(Z), l(Y ) ⊇ l(Z).
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Theorem 2.2. Let L be a bounded lattice. For a set Y ⊆ D(L) the following are
equivalent:

(i) Y is a doubly closed stable set;
(ii) Y = ϕ−1(1) for some MPM ϕ : D(L) −→ 2̃.

Proof. Let Y be a doubly closed stable set. Let us define a partial map ϕ :
D(L) −→ 2̃ by

ϕ(p) =

{
1 iff p ∈ Y,
0 iff p ∈ r(Y ).

Since Y ∩ r(Y ) = ∅, ϕ is well defined. Further, its domain is closed and it is
continuous. We claim that ϕ preserves E. By way of contradiction, suppose that
p, q ∈ dom(ϕ) are such that (p, q) ∈ E and ϕ(p) � ϕ(q). Necessarily, ϕ(p) = 1,
ϕ(q) = 0, hence p ∈ Y = lr(Y ), q ∈ r(Y ). By 2.1(i) there is h ∈ D(L) with
p ≤1 h, q ≤2 h. By the definition of the operator l, p ∈ l(r(Y )) implies that
h /∈ r(Y ). By the definition of r, there is k ∈ Y with h ≤2 k. Since the relation
≤2 is transitive, we obtain that q ≤2 k, hence q /∈ r(Y ), a contradiction. Thus,
ϕ preserves E. To show maximality, let ψ ⊇ ϕ be a partial morphism. Then
Y ⊆ ψ−1(1) and r(Y ) ⊆ ψ−1(0). Since ψ preserves E, we have (p, q) /∈ E whenever
p ∈ ψ−1(1), q ∈ ψ−1(0). Thus, neither p ≤1 q nor q ≤2 p can hold for such
p, q. We obtain that ψ−1(1) ⊆ l(ψ−1(0)), ψ−1(0) ⊆ r(ψ−1(1)). Consequently,
Y = lr(Y ) ⊇ l(ψ−1(0)) ⊇ ψ−1(1) and therefore Y = ψ−1(1) and r(Y ) = ψ−1(0).
Hence, ϕ = ψ. We have proved that ϕ is a MPM with Y = ϕ−1(1).

Conversely, let ϕ : D(L) −→ 2̃ be a MPM. By 1.5 we can assume that ϕ = ex
for some x ∈ L. Let Y = ϕ−1(1). Then Y = Bx and we claim that r(Y ) = Ax.
Indeed, if p ∈ Ax, q ∈ Bx, then p �2 q, hence Ax ⊆ r(Bx). On the other hand, if
p /∈ Ax then 1.1 yields q ∈ D(L) such that p−1(0) ⊆ q−1(0) and q(x) = 1, hence
p /∈ r(Bx). Symetrically we can show that Bx = l(Ax). Thus, lr(Y ) = Y , which
means that Y is a stable set. The continuity of ϕ implies that both Y and r(Y )
are closed. �

Putting together 1.7 and 2.2 we obtain the representation theorem from [5]: any
bounded lattice is isomorphic to the set of all doubly closed stable sets ordered by
the set inclusion.

The theorems 2.1 and 2.2 provide transition between our and Urquhart’s duals of
bounded lattices. They allow to translate Urquhart’s characterization of dual spaces
and his resuts about representation of complete lattices, surjective homomorphisms,
congruences, etc. We will not carry out these tasks here.

3. More about dual spaces

Our aim in this section is to obtain some information about topological graphs
that arise as duals of bounded lattices. It turns out however, that a wider class of
topological graphs can be interesting for representing bounded lattices.

First, let us notice that for any topological graph X̃ = (X,E, τ) with τ a T1-
topology, the set of all MPM’s X̃ −→ 2̃ is partially ordered by the rule

ϕ ≤ ψ iff ϕ−1(1) ⊆ ψ−1(1).
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Indeed, only the antisymmetry is not quite trivial. But, by 1.3, ϕ−1(1) = ψ−1(1)
implies ϕ−1(0) = ψ−1(0) and hence ϕ = ψ. The partially ordered set of all MPM’s
need not be a lattice in general. But it will be a lattice under some condition.

If ϕ and ψ are MPM’s X̃ −→ 2̃ then we define the partial maps k∧ϕ,ψ , k∨ϕ,ψ :
X −→ {0, 1} by

k∧ϕ,ψ(x) =

{
1 iff ϕ(x) = 1 and ψ(x) = 1,
0 iff ϕ(x) = 0 or ψ(x) = 0,

k∨ϕ,ψ(x) =

{
1 iff ϕ(x) = 1 or ψ(x) = 1,
0 iff ϕ(x) = 0 and ψ(x) = 0.

We claim that these maps are partial morphisms. The partial map k = k∧ϕ,ψ
preserves E. Indeed, if (k(x), k(y)) /∈ E, then k(x) = 1 and k(y) = 0 and without
loss of generality ϕ(x) = 1, ϕ(y) = 0. Since ϕ preserves E, we obtain (x, y) /∈ E.
Further, k is continuous and its domain is closed, since k−1(0) = ϕ−1(0) ∪ ψ−1(0)
and k−1(1) = ϕ−1(1)∩ψ−1(1) are closed sets. Hence k is a partial morphism. The
proof for k∨ϕ,ψ is similar.

We say that X̃ satisfies the condition (EXT) if, for every MPM’s ϕ and ψ, the
partial maps k∧ϕ,ψ , k∨ϕ,ψ can be extended to MPM’s.

Lemma 3.1. Let X̃ = (X,E, τ) be a topological graph with a T1-topology τ satis-
fying (EXT). Then the ordered set of all MPM’s X̃ −→ 2̃ is a bounded lattice.

Proof. Let ϕ, ψ be MPM’s. To prove the existence of ϕ ∧ ψ it is sufficient to find
a MPM η with η−1(1) = ϕ−1(1) ∩ ψ−1(1). Let η be the MPM extending k = k∧ϕ,ψ.
Then k−1(1) ⊆ η−1(1), it remains to show that k−1(1) ⊇ η−1(1). Let η(x) = 1.
Then (x, y) ∈ E holds for no y ∈ η−1(0) ⊇ ϕ−1(0) ∪ ψ−1(0). By 1.3(ii) we obtain
that ϕ(x) = 1, ψ(x) = 1 and hence k(x) = 1.

We have proved that ϕ∧ψ exists for every ϕ, ψ. The proof for ϕ∨ψ is analogous.
The universal bounds are the constant maps. �

Example 3.2. The condition (EXT) cannot be omitted in 3.1. We define X̃ =
(X,E, τ) as follows. (See Figure 4.) We set X = {a, b0, b1}∪{ci | i ∈ ω}∪{di | i ∈ ω}
(all the elements are distinct). Further, (x, y) ∈ E iff:
x = y or
x ∈ {b0, b1} and y ∈ {ci | i ∈ ω} or
x ∈ {ci | i ∈ ω} and y ∈ {b0, b1}.
Finally, a set Y ⊆ X will be closed in τ if it is finite or contains the element
a. It is easy to see that τ is a T1-topology. Now we define MPM’s ϕ and ψ
by ϕ−1(0) = {b0}, ϕ−1(1) = {a, b1, d0, d1, d2, . . . }, ψ−1(0) = {b1}, ψ−1(1) =
{a, b0, d0, d1, d2, . . . }. It is not difficult to check that we indeed have MPM’s. We
prove that ϕ ∧ ψ does not exists. Suppose that η is a MPM, η ≤ ϕ, η ≤ ψ.
By the definition of ordering, η−1(1) ⊆ ϕ−1(1) ∩ ψ−1(1) = {a, d0, d1, d2, . . . }. By
1.3(i), η−1(0) ⊇ {b0, b1, c0, c1, c2, . . . }. The set η−1(0) is closed and infinite, hence
a ∈ η−1(0). Then a /∈ η−1(1) and therefore η−1(1) must be a finite subset of
{d0, d1, d2, . . . }, which implies that η−1(0) = X \ η−1(1).

We have shown that the lower bounds of the set {ϕ,ψ} are exactly such MPM’s
η, for which η−1(1) is a finite subset of {d0, d1, d2, . . . } and η−1(0) = X \ η−1(1).
Among them, there is no largest element, and that is why ϕ ∧ ψ does not exist.
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Figure 4

Notice that (EXT) is satisfied whenever X̃ is isomorphic to dual of some bounded
lattice. (Indeed, if ϕ = ex, ψ = ey, then ex∧y extends k∧ϕ,ψ.) Further, it is obviously
satisfied, whenever X̃ is finite (or, more generally, when the topology is discrete). In
the finite case, even a stronger condition is satisfied: every partial morphism can be
extended to a MPM. A question now arises, whether this (simpler) condition could
replace (EXT). However, the next example shows that duals of bounded lattices
need not satisfy it.
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Example 3.3. Let L be the lattice depicted on Figure 5. We shall exhibit a partial
morphism ϕ : D(L) −→ 2̃ that cannot be extended to a MPM.

Let A = {f ∈ D(L) | f(y) = 0}, B = {f ∈ D(L) | f(y) = 1}. It is not difficult to
verify that A consists of a single h ∈ D(L) defined by

h(x) =

{
0 if x ≤ y,

1 otherwise,

while B = {f0, f1, f2, . . . }, where

fi(x) =


0 if x ≤ bi,

1 if x ≥ y,

undefined otherwise.

By the definition of the topology in D(L), the sets A and B are closed. Further,
(h, fi) /∈ E for any i ∈ ω. Hence the partial mapping ϕ : D(L) −→ 2̃ defined by
ϕ−1(0) = B, ϕ−1(1) = A, is a partial morphism. For the contradiction, suppose
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that ϕ can be extended to a MPM ψ. By 1.5, ψ = ez for some z ∈ L. For any
i ∈ ω we have fi(z) = ez(fi) = ϕ(fi) = 0. The only z ∈ L satisfying this condition
is z = 0. But this is impossible, since e0(h) = 0 6= ϕ(h).

Hence, any topological graph with T1-topology satisfying (EXT) represents some
bounded lattice. However, not all such topological graphs are equally advantageous
for representing bounded lattices. Some of them contain redundancies and are
unnecessarily large. That is why we introduce another condition, which ensures
that any two points can be properly distinguished by a MPM.

Let X̃ = (X,E, τ) be a topological graph. For any x ∈ X we denote x+ = {y ∈
X | (x, y) ∈ E}, x− = {y ∈ X | (y, x) ∈ E}. We say that X̃ satisfies (SEP) if, for
any x, y ∈ X such that x 6= y, (x, y) ∈ E and (y, x) ∈ E, the following conditions
are satisfied:

(1) x+ 6= y+ or x− 6= y−;
(2) if x− * y− then y− * x−.
(3) if x+ * y+ then y+ * x+;

Lemma 3.4. If X̃ = D(L) for some bounded lattice L, then X̃ satisfies (SEP).

Proof. Let f , g be MPH’s L −→ 2, f 6= g, (f, g) ∈ E, (g, f) ∈ E.
(1) Without loss of generality, f−1(0) * g−1(0), hence there is x ∈ L with

f(x) = 0 and g(x) undefined. By 1.1 there is a MPH h with g−1(0) ⊆ h−1(0) and
h(x) = 1. Obviously, (h, g) ∈ E, (h, f) /∈ E, hence f− 6= g−.

(2) Suppose that f− * g−. Then we have a MPH h with (h, f) ∈ E, (h, g) /∈ E.
There must be x ∈ L with h(x) = 1, g(x) = 0 and f(x) 6= 0, hence g−1(0) *
f−1(0). We claim that also f−1(0) * g−1(0) Indeed, if f−1(0) ( g−1(0), then the
maximality of f implies that g−1(0)∩f−1(1) 6= ∅, hence (f, g) /∈ E, a contradiction.
Thus, f−1(0) * g−1(0) and by the same argument as in (1), there exists a MPH h′

with (h′, g) ∈ E, (h′, f) /∈ E.
(3) can be proved similarly. �

We have found out that if a topological graph X̃ has a T1-topology and satisfies
(EXT) then the set of all MPM’s X̃ −→ 2̃ forms a lattice. We denote this lattice
by C(X̃). Thus, 1.7 says that L ∼= C(D(L)) holds for any bounded lattice L. Now
we are going to prove that if X̃ in addition satisfies (SEP) and is finite, then X̃

is canonically embedded in D(C(X̃)). Since the following assertion concerns finite
graphs only, the condition (EXT) is automatically satisfied. We do not know if a
similar statement (with (EXT) added) holds for the infinite case.

Let X̃ be a topological graph with a T1-topology and (EXT). For every x ∈ X
we define the evaluation function εx : C(X̃) −→ {0, 1} by the rule

εx(ϕ) =

{
ϕ(x) if x ∈ dom(ϕ),
undefined otherwise.

Lemma 3.5. Let X̃ = (X,E, τ) be a finite topological graph with a T1-topology
(necessarily discrete), satisfying (SEP). Then

(i) for every x ∈ X, εx is a MPH C(X̃) −→ 2;
(ii) for any x, y ∈ X, (x, y) ∈ E iff (εx, εy) ∈ E;
(iii) for any x, y ∈ X, if x 6= y then εx 6= εy.
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Proof. (i) Let x ∈ X. If ϕ,ψ ∈ C(X̃), ϕ ≥ ψ and ϕ ∈ ε−1
x (0), then ϕ(x) = 0

and by the definition of the ordering in C(X̃) we obtain that ψ(x) = 0 and hence
ψ ∈ ε−1

x (0). Further, if ϕ,ψ ∈ ε−1
x (0), then ϕ(x) = ψ(x) = 0. From the proof of

3.1 one can see that (ϕ ∨ ψ)−1(0) = ϕ−1(0) ∩ ψ−1(0), hence (ϕ ∨ ψ)(x) = 0 and
(ϕ ∨ ψ) ∈ ε−1

x (0). We have proved that ε−1
x (0) is an ideal in C(X̃). Similarly we

can prove that ε−1
x (1) is a filter. Hence, εx is a partial homomorphism. It remains

to prove the maximality of εx. Let us define partial maps ψ0, ψ1 : X̃ −→ 2̃ by

ψ0(y) =

{
0 if y = x,

1 if (y, x) /∈ E,
ψ1(y) =

{
1 if y = x,

0 if (x, y) /∈ E.

Since E is reflexive, the maps are well defined and it is easy to see that they are
partial morphisms. Let ϕ0 and ϕ1 be their extensions to MPM’s.

Suppose that ϕ is a MPM X̃ −→ 2̃ with ϕ /∈ dom(εx), that is x /∈ dom(ϕ).
We claim that ϕ ∧ ϕ1 ≤ ϕ0 holds in C(X̃) and we will prove it by showing the
inclusion ϕ−1(1) ∩ ϕ−1

1 (1) ⊆ ϕ−1
0 (1). Let y ∈ ϕ−1(1) ∩ ϕ−1

1 (1), hence ϕ(y) = 1,
ϕ1(y) = 1. We need to show that ϕ0(y) = 1. This is clear if (y, x) /∈ E, because
then ψ0(y) = 1. Let us suppose that (y, x) ∈ E. We will show that this assumption
leads to a contradiction. We have (x, y) ∈ E because otherwise ϕ1(y) = ψ1(y) = 0.
Further, x 6= y because x /∈ dom(ϕ), y ∈ dom(ϕ). Since x /∈ ϕ−1(1), by 1.3 there
is z ∈ ϕ−1(0) with (x, z) ∈ E. Clearly (y, z) /∈ E, hence x+ * y+. By (SEP) there
is u ∈ X such that (x, u) /∈ E, (y, u) ∈ E. Then ϕ1(u) = ψ1(u) = 0, which implies
that ϕ1(y) 6= 1, a contradiction.

Hence, ϕ ∧ ϕ1 ≤ ϕ0 and similarly one can prove that ϕ ∨ ϕ0 ≥ ϕ1. This means,
that if f ⊇ εx is a partial homomorphism, then ϕ /∈ dom(f). Indeed, if f(ϕ) = 1
(the case f(ϕ) = 0 is similar), then f(ϕ ∧ ϕ1) = f(ϕ) ∧ f(ϕ1) = 1 ∧ εx(ϕ1) = 1,
while f(ϕ0) = εx(ϕ0) = 0. Hence, εx is a MPH.

(ii) If (x, y) ∈ E, then ϕ(x) ≤ ϕ(y) holds for every MPM ϕ with x, y ∈ dom(ϕ).
In other words, εx(ϕ) ≤ εy(ϕ) holds for every ϕ ∈ dom(εx) ∩ dom(εy), which by
the definition of E means that (εx, εy) ∈ E.

Conversely, if (x, y) /∈ E, then we can find a MPM ϕ with ϕ(x) = 1, ϕ(y) = 0,
which shows that (εx, εy) /∈ E.

(iii) Let x 6= y. If (x, y) /∈ E then the map k : {x, y} −→ {0, 1} with k(x) = 1,
k(y) = 0 is a partial morphism and can be extended to a MPM ϕ : X̃ −→ 2̃. Clearly
εx(ϕ) = 1 6= 0 = εy(ϕ). If (y, x) /∈ E, we use a similar argument. Suppose now
that (x, y) ∈ E, (y, x) ∈ E. By (SEP) we can assume (without loss of generality)
that x+ * y+. Hence, there is z ∈ X with (x, z) ∈ E, (y, z) /∈ E. The map
k : {y, z} −→ {0, 1} defined by k(y) = 1, k(z) = 0 can be extended to a MPM ϕ.
Then ϕ(y) = 1, ϕ(z) = 0 and, since ϕ preserves E, ϕ(x) 6= 1. Hence, εy(ϕ) = 1 6=
εx(ϕ). �

Hence, under the conditions of 3.5, the assignment x 7→ εx is an embedding
X̃ −→ D(C(X̃)). Of course, this embedding is an isomorphism if and only if X̃ is a
dual space of some bounded lattice. In general however, this embedding is proper.
For example, consider X̃ as a 3-element set {x, y, z} equipped with the binary
relation E = {(x, x), (y, y), (z, z), (x, y), (y, z), (z, x)} and the discrete topology. It
is not hard to verify that C(X̃) is the 5-element modular nondistributive lattice
M3 and that D(M3) has 6 elements. This shows that in some cases there exist
topological graphs smaller than D(L) which represent L (more effectively, one could
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say). However, D(L) reflects the properties of L better. For example, L and D(L)
have the same automorphism group, which need not be true for other topological
graphs representing L.

In some cases (for instance, if L = N5, the 5-element nonmodular lattice) D(L)
is minimal in the sense that there is no proper subgraph of D(L) representing L.
It is not clear which lattices have this property.

Finally, let us mention that some (rather complicated) characterization of topo-
logical graphs that are the duals of bounded lattices can be obtained by translating
the characterization in [5].

4. Concluding remarks

Several questions of a general nature arise in connection with our representation.
The notions of MPH and MPM are applicable also for other algebras and relational
structures. One can try to build similar representations for various classes of alge-
bras. This effort is especially promising when one starts from some natural duality
(as the Priestley duality in our case). In an implicit form, representations of this
kind can be found in the literature. For example, Isbell’s proof in [3] that every me-
dian algebra is embeddable in a lattice provides a representation that is (at least in
the finite case) a generalization of Werner’s duality for symmetric median algebras
([6, appendix]) via MPH’s.

There are unanswered questions in our representation itself. Some of them have
been mentioned in the previous text. In fact, it is not quite clear that the variety
of bounded lattices is the ”right” class of algebras for the representation based
on 2 and 2̃. There might be an algebra A which is not a lattice (but of the same
signature), for which elements of A are in a one-to-one correspondence with MPM’s
D(A) −→ 2̃ and whose operations can be in some way recovered from D(A). The
Priestley duality works with the fact that the variety of bounded distributive lattices
is generated by the algebra 2. The relationship between the variety of all bounded
lattices and 2 is not that tight. What might be a key property of bounded lattices
is that their elements can be effectively separated by MPH’s into 2. However, we
are unable to specify the word ”effectively”.
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