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Abstract. The main result of this paper is the following theorem: If a projec-
tive Boolean algebra B is generated by its sublattice L, then there is a projective
distributive lattice D which is a sublattice of L and generates B.

1. Preliminaries

The operations of Boolean algebras will be denoted by ∧ (meet), ∨ (join), ′

(complement), 0 (the least element) and 1 (the greatest element). If B is a Boolean
algebra (we do not distinguish between the algebra and its underlying set) and
H ⊆ B, then 〈H〉 denotes the subalgebra of B generated by H. For Boolean
algebras A, C we will write C ≤rc A and say that C is relatively complete in A,
if C is a subalgebra of A and for every a ∈ A there exists the greatest c ∈ C with
c ≤ a. We denote this element by aC . If C ≤rc A then for each a ∈ A there exists
the least c ∈ C with a ≤ c. This element will be denoted by aC . Thus, aC = (a′C)′.
By C ≤rcω A we understand that C ≤rc A and A = 〈C ∪ X〉 for some countable
set X. The following statement is easy to prove(see [8]):

1.1. Lemma. Let A and C be subalgebras of a Boolean algebra B.
(i) If A ≤rc B, A ⊆ C ⊆ B, then A ≤rc C.
(ii) If A ≤rc B, x ∈ B, then 〈A ∪ {x}〉 ≤rc B.

A chain {Aα |α < τ} of Boolean algebras (where τ is an arbitrary ordinal num-
ber) is said to be continuous if Aλ =

⋃{Aα |α < λ} holds for each limit ordinal
number λ < τ . For the sake of brevity, by a distributive lattice we understand in
this paper a bounded lattice satisfying the well-known distributivity identities. Fur-
thermore, all lattice homomorphisms are assumed to preserve the universal bounds.
Analogically, saying that C is a sublattice of a distributive lattice D we mean that
C is closed under ∧ and ∨ and contains the universal bounds of D. Free distributive
lattices are the free objects in the category of bounded distribu tive lattices and 0, 1-
preserving lattice homomorphisms. For every distributive lattice D there is unique
(up to iso morphism) Boolean algebra B(D) that contains D as a sublattice and
〈D〉 = B(D). Each a ∈ B(D) can be expressed in the form a = a0 + a1 + ... + an,
where a0, ...an ∈ D, a0 ≤ a1 ≤ ... ≤ an and + is the operation of symmetric
difference (i. e. x + y = (x′ ∧ y) ∨ (x′ ∧ y)). For every Boolean algebra B, the
set B with the operations +, ∧ is a ring. Further, we have identities a + a = 0,
a ∨ b = a + b + (a ∧ b), and a′ = a + 1. Every homomorphism f : D1 −→ D2 of
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distributive lattices canbe extended to a homomorphism f∗ : B(D1) −→ B(D2) of
Boolean algebras. (See [4], ch.II.4.)

An object P of a category K is E-projective (where E is some class of epimor-
phisms) if, for every e ∈ E , e : A −→ B and every morphism f : P −→ B, there
exists a morphism g : P −→ A with eg = f . Injective objects are defined dually.

A projective Boolean algebra (distributive lattice) is a E-projective object of
the category B of Boolean algebras (D of distributive lattices) and their homomor-
phisms, where E is the class of all surjective homomorphisms. Basic facts about
projective Boolean algebras are summarized in the following assertion. For the
proofs see [5] and [6]. Recall that an object A is a retract of B if there are mor-
phisms f : A −→ B, g : B −→ A such that gf = id(A).

1.2. Theorem.
(i) A Boolean algebra is projective iff it is a retract of some free Boolean algebra.
(ii) Any free product of projective Boolean algebras is projective.
(iii) Every retract of a projective Boolean algebra is projective.
(iv) Every countable Boolean algebra is projective.

According to 1.2 every projective Boolean algebra is a sub algebra of a free
Boolean algebra, hence it cannot contain an un countable chain. We will use the
following characterization of projective Boolean algebras proved by Koppelberg in
[8]. Analogical result for Boolean topological spaces can be found in [7].

1.3. Theorem. Let A be a Boolean algebra. The following statements are equiv-
alent:

(i) The Boolean algebra A is projective.
(ii) There exists a continuous chain {Aα |α < τ} of subalgebras of A such that

A0 = {0, 1}, ⋃{Aα |α < τ} = A and Aα ≤rcω Aα+1 holds for each α with
α + 1 < τ .

(iii) There exists a family S of subalgebras of A with the following properties:
(S1) {0, 1} ∈ S ;
(S2) if S ∈ S then S ≤rc A;
(S3) if C ⊆ S is a non-empty chain under set inclusion then

⋃ C ∈ S ;
(S4) for each S ∈ S and a countable subset X of A, there is S′ ∈ S such

that S ∪X ⊆ S′ and S ≤rcω S′.

In the next theorem we summarize some facts about projective distributive lat-
tices. Proofs of (i), (iii) and (iv) can be found in [1], [2], (ii) is contained in [3]. For
a lattice L, let J(L) and M(L) denote the set of all non-zero ∨ -irreducibles and
the set of all non-unit ∧-irreducibles respectively.

1.4. Theorem.
(i) A distributive lattice is projective iff it is a retract of some free distributive

lattice.
(ii) A distributive lattice D is projective iff it satisfies the following conditions:

(1) J(D) is a ∧-subsemilattice of D;
(2) both J(D) and M(D) generate D;
(3) for each a ∈ D there are two finite sets A(a) ⊆ {d ∈ D | d ≥ a} and

B(a) ⊆ {d ∈ D | d ≤ a} such that A(a) ∩B(b) 6= ∅ for every a ≤ b.
(iii) A finite D ∈ D is projective iff it satisfies (1).
(iv) A countable D ∈ D is projective iff it satisfies (1) and (2).
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The last four assertions of this section are technical lemmas about Boolean al-
gebras. For the proof of 1.5 see [4], p.73.

1.5. Lemma (Sikorski’s extension criterion). Let A and B be Boolean algebras, A
generated by its subset G. Let f be a map of G into B. The map f can be extended
to a homomorphism of A into B iff, for arbitrary x1, x2, . . . xn, y1, y2, . . . ym ∈ G,
the equality x1∧· · ·∧xn∧y′1∧. . . y′m = 0 implies f(x1)∧· · ·∧f(xn)∧· · ·∧f(ym)′ = 0.

1.6. Lemma. Let Boolean algebras A and C satisfy C ≤rc A and let a ∈ A, b ∈ C.
Then (a ∨ b)C = aC ∨ b, (a ∧ b)C = aC ∧ b, (a ∨ b)C = aC ∨ b, (a ∧ b)C = aC ∧ b.

Proof. We will show the first two equalities.
I. Denote x = (a ∨ b)C , d = (aC ∨ b′) ∧ x. Clearly aC ∨ b ≤ x ≤ a ∨ b, aC ≤ d.

From d ≤ (aC ∨ b′) ∧ (a ∨ b) ≤ a it follows that d = aC = max{c ∈ C | c ≤ a} . We
obtain aC ∨ b = d ∨ b = ((aC ∨ b′) ∧ x) ∨ b = x. II. It holds that aC ∧ b ≤ (a ∧ b)C ,
because a∧ b ≥ aC ∧ b ∈ C. On the other hand, (a∧ b)C ≤ aC , (a∧ b)C ≤ bC = b,
hence (a ∧ b)C ≤ aC ∧ b. ¤
1.7. Lemma. Let Boolean algebras A and C satisfy C ≤rc A. Let x1, x2, . . . xn be
distinct elements of A such that (xi)C ≤ (xi+1)C for each i = 1, 2 . . . n− 1. Let M
and N be disjoint subsets of {1, 2 . . . n} . Denote B = {xi | i ∈ M} ∪ {x′i | i ∈ N} .
Then (

∧
B)C =

∧{xC |x ∈ B} .

Proof. Let us denote j = min(M) and k = max(N), provided M 6= ∅ and N 6= ∅
respectively. In the case M = N = ∅ the assertion is evident. (We set

∧ ∅ = 1.) If
M = ∅ , N 6= ∅ (the case M 6= ∅ , N = ∅ is analogous), we have (

∧
B)C = (x′k)C =∧{xC |x ∈ B} . Finally, assume M, N 6= ∅ . We obtain (

∧
B)C == (xj ∧ x′k)C ≤

(xj)C ∧ (x′k)C =
∧{xC |x ∈ B} . The inverse inequality is evident if j < k, because

in this case (xj)C ∧ (x′k)C ≤ (xk)C ∧ (x′k)C = 0. Now suppose that j > k. By
1.6 we have both (xj ∧ x′k)C ≥ (xj)C ∧ (x′k)C and (xj ∧ x′k)C ≥ (xj)C ∧ (x′k)C .
Since (xj)C ∨ (x′k)C ≥ (xj)C ∨ (x′k)C ≥ (xk)C ∨ (x′k)C = 1, we get (xj ∧ x′k)C ≥
((xj)C ∧ (x′k)C) ∨ ((xj)C ∧ (x′k)C) = (xj)C ∧ (x′k)C . ¤
1.8. Lemma. Let a Boolean algebra A be generated by its sub lattice L. Let
a, b ∈ L. Then the interval [a, b] of A is generated (as a Boolean algebra) by its
subset [a, b] ∩ L.

Proof. The algebra [a, b] is the homomorphic image of A under the map f(x) =
(x ∨ a) ∧ b. Hence, it is generated by f(L) ⊆ L ∩ [a, b]. ¤

2. The main results

2.1. Lemma. Let D be a projective distributive lattice. Then B(D) is a projective
Boolean algebra.

Proof. Let f : B1 −→ B2 be an epimorphism of Boolean algebras (i.e. surjective
homomorphism) and g : B(D) −→ B2 an arbitrary homomorphism. Then we
have the lattice homomorphism g∗ = g ¹ D and, from the projectivity of D, a
lattice homomorphism h∗ : D −→ B1 with fh∗ = g, which can be extended to a
homomorphism h : B(D) −→ B1 = B(B1). The homomorphisms fh and g coincide
on D, hence fh = g. ¤

Of course, a projective Boolean algebra can be generated by its non-projective
sublattices as well. Notice that no Boolean algebra with more than two elements
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is a projective distributive lattice. Now we are going to prove that if for a distribu-
tive lattice L, B(L) is a projective Boolean algebra, then there exists a projective
sublattice D of L with B(D) = B(L).

2.2. Lemma. Let A be a projective Boolean algebra generated by its sublattice L.
Suppose that S is a family of subalgebras of A with the properties (S1)-(S4). Then
for each S ∈ S and countable X ⊆ A there is a S′ ∈ S such that S ∪X ⊆ S′ and
S ≤rcω S′ = 〈S ∪ Y 〉 for some countable Y ⊆ L.

Proof. By the induction we define an increasing chain {Sn |n < ω} ⊆ S such that
S ≤rcω Si for each i < ω. By (S4) there is S0 ∈ S such that S ∪ X ⊆ S0 and
S ≤rcω S0. Suppose now that we have defined Si ∈ S with Si = 〈S ∪ {sk | k <
ω}〉. For each k there exists a finite set Y i

k ⊆ L such that sk ∈ 〈Y i
k 〉 . Denote

Y i =
⋃{Y i

k | k < ω} . Using (S4) we get Si+1 ∈ S such that S ∪ Y i ⊆ Si+1 ,
S ≤rcω Si+1. Moreover, the subalgebra of Si+1 generated by S ∪ Y i contains Si.
Let us set S′ =

⋃{Si | i < ω}. We have S′ ∈ S (by (S3)), S ≤rc S′, X ⊆ S′ and
S′ = 〈S ∪ Y 〉, where Y =

⋃{Y i | i < ω}. ¤
2.3. Lemma. Let A be a projective Boolean algebra generated by its sublattice
L. Then there exists a continuous chain {Aα |α < τ} of subalgebras of A with the
following properties:

(i) A0 = {0, 1} ;
(ii)

⋃{Aα |α < τ} = A;
(iii) for each α < τ there is x ∈ L such that Aα ≤rc Aα+1 = 〈Aα ∪ {x}〉 ;
(iv) for each α < τ it holds that Aα = 〈Aα ∩ L〉.

Proof. Let S be a family of subalgebras of A with the properties (S1)-(S4). First
we construct a continuous chain {Bα |α < γ} ⊆ S satisfying (i), (ii), (iv) and

(iii’) for each α < γ there is a countable Y ⊆ L with Bα ≤rc Bα+1 = 〈Bα ∪ Y 〉 .
We proceed by induction. Let us set B0 = {0, 1} and suppose that we have a chain
{Bα |α < λ} ⊆ S. If

⋃{Bα |α < λ} = A, we can set γ = λ . Otherwise we
have x ∈ A \ ⋃{Bα |α < λ} . For limit λ we set Bλ =

⋃{Bα |α < λ} ∈ S. For
λ = β + 1, 2.2 yields Bλ ∈ S and a countable Y ⊆ L with Bβ ∪ {x} ⊆ Bλ and
Bβ ≤rc Bλ = 〈Bβ ∪ Y 〉 . It is clear that the chain {Bα |α < γ} has the desirable
properties. Now we get the chain {Aα |α < τ} by inserting the algebras 〈Bα∪{y1}〉
, 〈Ba ∪ {y1, y2}〉,. . . (where Y = {yi | i < ω} ⊆ L, Bα+1 = 〈Bα ∪ Y 〉) between Bα

and Bα+1. Validity of (i),(ii) and (iv) is evident, (iii) follows from (iii’) and 1.1. ¤
2.4. Lemma. Let x, a0, a1, . . . a2n be elements of a Boolean algebra A such that
x ≥ a0 + a1 + · · ·+ a2n, a0 ≤ · · · ≤ a2n. Then x ∈ 〈Y 〉 , where Y = {a0, . . . a2n, x∨
a2n, (x ∧ a2n−1) ∨ a2n−2, . . . , (x ∧ a1) ∨ a0} .

Proof. Since x is the complement of a2n in the interval [x∧ a2n, x∨ a2n], it suffices
to prove that x ∧ a2n ∈ 〈Y 〉 . By induction we show that x ∧ ai ∈ 〈Y 〉 for each
i = 0, 1, . . . 2n.

We have x∧a0 ≥ (a0 + · · ·+a2n)∧a0 = a0 +a0 + . . . a0 = a0, hence x∧a0 = a0,
x ∧ a0 ∈ 〈Y 〉. Suppose now that x ∧ ak−1 ∈ 〈Y 〉 , k ≤ 2n.

I. If k is odd, then x∧ak is the complement of ak−1 in the interval [x∧ak−1, (x∧
ak) ∨ ak−1] and x ∧ ak−1 ∈ 〈Y 〉 implies that x ∧ ak ∈ 〈Y 〉.

II. If k is even, we get ak ≥ ak−1∨(x∧ak) ≥ ak−1∨((a0+· · ·+a2n)∧ak) = ak−1∨
(a0 + · · ·+ak) == ak−1 +a0 +a1 + · · ·+ak +a0 +a1 + · · ·+ak−2 +ak−1 +ak−1 = ak.
Hence, x ∧ ak is the complement of ak−1 in [x ∧ ak−1, ak], x ∧ ak ∈ 〈Y 〉 . ¤
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2.5. Lemma. Let x, b0, b1, . . . b2n−1 be elements of a Boolean algebra A such that
x ≤ b0 + · · ·+b2n−1, b0 ≤ · · · ≤ b2n−1. Then x ∈ 〈Y 〉, where Y = {b0, . . . b2n−1, (x∧
b1) ∨ b0, . . . , (x ∧ b2n−1) ∨ b2n−2} .

Proof. We have x′ ≥ (b0 + · · ·+ b2n−1)′ = b′2n−1 + · · ·+ b′0 + 1. Now 2.4 yields that
x′ ∈ 〈{b′0, . . . b′2n−1, (x

′ ∧ b′0) ∨ b′1, . . . , (x
′ ∧ b′2n−2) ∨ b′2n−1}〉 = 〈Y 〉 . ¤

2.6. Lemma. Let K and L be sublattices of Boolean algebras C and A respectively,
such that C = 〈K〉 , A = 〈L〉 , C ≤rc A and A = 〈C ∪ {x}〉 for some x ∈ L. Then
there exist x1, x2, . . . xm ∈ L with the properties

(i) (xi)C , (xi)C ∈ K for each i = 1, 2, . . . m;
(ii) (xi)C ≤ (xj)C for each i < j;
(iii) A = 〈C ∪ {x1, . . . , xm}〉 .

Proof. Let xC = a0+· · ·+ak, where a0, . . . , ak ∈ K, a0 ≤ · · · ≤ ak. We can suppose
that k = 2n (otherwise we add 0 to the sum). By 2.4 we have A = 〈C∪{y0, . . . yn}〉
, where yn = x ∨ a2n, yi = (x ∧ a2i+1) ∨ a2i for i = 0, . . . , n − 1. From 1.6 we get
(yi)C = ((a0 + · · · + a2n) ∧ a2i+1) ∨ a2i = a2i (this holds also for i=n). Element
yi (i = 0, . . . , n − 1) belongs to the interval Ii = [a2i, a2i+1], yn ∈ In = [a2n, 1].
By 1.8, each Ii is, as a Boolean algebra, generated by Ii ∩K. Clearly (yi)C ∈ Ii,
hence (yi)C = b0 ∗ · · · ∗ bq, where b0, . . . , bq ∈ Ii ∩ K, b0 ≤ · · · ≤ bq and ∗ is the
addition in the algebra Ii. We can suppose that q = 2p − 1. Now 2.5 yields that
yi ∈ 〈C ∪ {yi1, . . . , yip}〉 , where yij = (yi ∧ b2j−1) ∨ b2j−2. We have (yij)C =
(a2i ∧ b2j−1)∨ b2j−2 ∈ K and (yij) = ((b0 ∗ · · · ∗ bq)∧ b2j−1)∨ b2j−2 == b2j−1 ∈ K.
The set {x1, . . . xm} will consist of all elements yij . ¤

2.7. Theorem. Let a projective Boolean algebra A be generated by its sublattice L.
Then there exists a projective distributivesublattice D of L generating the algebra
A.

Proof. Let {Aα |α < τ} be the chain of subalgebras of A constructed in 2.3. By
induction we find a sequence {Fα |α < τ} of free Boolean algebras (Fα with the
free generating set Mα ) and two sequences {fα |α < τ} and {eα | a < τ} of homo-
morphisms (fα : Fα −→ Aα, eα : Aα −→ Fα) with the following properties:

(i) fαeα = id(Aα), fα(Mα) ⊆ L, eα(fα(Dα)) ⊆ Dα, for each α < τ , where Dα

is the lattice generated by Mα in Fα;
(ii) Ma ⊆ Mβ , fα ⊆ fβ , eα ⊆ eβ , for each α < β < τ .

We set F0 = {0, 1}, M0 = ∅ and define e0 and f0 by the obvious way. Let us
suppose that we have constructed Fα , eα , fα for all α < λ < τ .

I. Let λ be a non-limit ordinal, λ = β+1. Then we have Aβ ≤rc Aλ = 〈Aβ∪{x}〉
for some x ∈ L ∩ Aλ, Aλ = 〈L ∩ Aλ〉, Aβ = 〈fα(Dα)〉 . Let x1, . . . xm ∈ L ∩ Aλ

with the properties (i)-(iii) of 2.6. Take an arbitrary set Z = {z1, . . . zm} of the
cardinality m with Z ∩ Aβ = ∅ . Let Fλ ⊇ Fβ be the free Boolean algebra with
the free generating set Mλ = Mβ ∪ Z. Let fλ : Fλ −→ Aλ be the homomorphism
uniquely determined by the conditions fλ ¹ Fβ = fβ and fλ(zi) = xi. Clearly
fλ(Mλ) ⊆ L. Using 1.5 we show that there exists a homomorphism eλ : Aλ −→ Fλ

with eβ ⊆ eλ and eλ(xi) = (zi ∧ eβ(bi)) ∨ eβ(ai) (i = 1, . . . ,m), where ai = (xi)C ,
bi = (xi)C . Suppose that Y = {y1, . . . , yn} ⊆ Aβ∪{x1, . . . , xm, x′1, . . . , x

′
m},

∧
Y =

0. We have to verify that d =
∧{eλ(yk) | yk ∈ Aβ ∪ {x1, . . . xm}} ∧

∧{eλ(y′k)′ | yk ∈
{x′1, . . . , x′m}} = 0. This is trivial if {yk, y′k} ⊆ Y for some k. If there is no
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such k, by 1.6 and 1.7 we obtain that 0 = (
∧

Y )C =
∧{(yk)C | yk ∈ Y }. Since

eβ is anhomomorphism, we have 0 = eβ(
∧{(yk)C | yk ∈ Y } =

∧{eβ((yk)C) | yk ∈
Y } ≥ d. Thus, there is a homomorphism eλ fulfilling the above conditions. From
ai, bi ∈ fβ(Dβ) and eβ(fβ(Dβ)) ⊆ Dβ ⊆ Dλ we deduce that eλ(fλ(zi)) = (zi ∧
eβ(bi)) ∨ eβ(ai) ∈ Dλ, hence eλ(fλ(Dλ)) ⊆ Dλ. Further, fλ(eλ(xi)) = fλ((zi ∧
eβ(bi))∨ eβ(ai)) = (fλ(zi)∧ bi)∨ai = xi, hence fλeλ is the identity on a generating
set, which implies that fλeλ = id(Aλ).

II. Let λ be a limit ordinal. Let us set Mλ =
⋃{Mα |α < λ}, Fλ =

⋃{Fα |α <
λ}, fλ =

⋃{fα |α < λ}, eλ =
⋃{eα |α < λ}. Validity of (i) and (ii) is evident.

Finally, set D =
⋃{f(Dα) |α < τ}, f =

⋃{fα |α < τ}, e =
⋃{eα |α < τ}. It

is clear that D ⊆ L and 〈D〉 = A. Moreover, D is a retract of the free distributive
lattice Dτ =

⋃{Dα |α < τ} via e ¹ D and f ¹ Dτ . ¤
In particular, every projective Boolean algebra is generated by some of its pro-

jective distributive sublattices.
We can also formulate the consequence of 2.7 for ordered topological spaces,

using the Priestley duality (see [9]). By this duality, projective Boolean algebras are
associated with injective Boolean spaces (also called Dugundji spaces), i.e. retracts
of powers of a two element discrete space. Duals of projective distributive lattices
are injective Priestley spaces (with respect to the class of all embeddings), i.e.
retracts of powers of a two element chain.

2.8. Corollary. If the topology of a Priestley space P is injective, then we can
extend the ordering on P in such a way thatwe get an injective Priestley space.

Finally, let us present one problem. Every free distributive lattice is a free
product of three element lattices (i.e. free distributive lattices with one generator).
Projective distributive lattices are just retracts of such free products. Free products
of arbitrary finite (or countable) distributive lattices need not be projective, but
they still generate projective Boolean algebras. The question now arises, whether
the converse of this is true.

2.9. Problem. Let a distributive lattice D generate a projective Boolean algebra
B(D). Is D a retract of the free product of some finite (or countable) distributive
lattices?
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