GRAPHICAL COMPOSITIONS AND WEAK CONGRUENCES

MIROSLAV PLOŠČICA

Abstract

Graphical compositions of equivalences were introduced (independently) by B. Jónsson and H. Werner in order to determine whether a subset of $\mathrm{Eq}(X)$ (the set of all equivalences on the set X) is the set of all congruences of some algebra defined on X. Namely, a complete sublattice L of $\mathrm{Eq}(X)$ is the congruence lattice of some algebra defined on X if and only if L is closed under all graphical compositions. We generalize this result and prove that a similar characterization is possible for weak congruences (i. e. symmetric and transitive compatible relations).

Weak congruences were introduced and investigated by B. Šešelja, G. Vojvodić and A. Tepavčević in [1]-[4] and other papers. Let us recall basic concepts.

An algebra $\mathcal{A}=(A, F)$ is a set A (called the underlying set) endowed with some set F of finitary operations (called the basic operations of \mathcal{A}). A finitary function $f: A^{n} \rightarrow A$ is called a polynomial of \mathcal{A}, if it can be obtained from projections, constant functions and basic operations of \mathcal{A} by means of compositions.

Let X be a set. A weak equivalence on X is any symmetric and transitive binary relation. We denote by $\operatorname{Eq}(X), \mathrm{E}_{w}(X)$ and $\operatorname{Rel}(X)$ the sets of all equivalences, weak equivalences and binary relations on the set X, respectively. Let $f: X^{n} \rightarrow X$ be any function. We say that f preserves a relation $\rho \in \operatorname{Rel}(X)$ if $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \rho$ implies $\left(f\left(x_{1}, \ldots, x_{n}\right), f\left(y_{1}, \ldots, y_{n}\right)\right) \in \rho$. A nullary function f (i.e. a constant $f \in X$) preserves $\rho \in \operatorname{Rel}(X)$ if $(f, f) \in \rho$. A binary relation $\rho \in \operatorname{Rel}(A)$ is called compatible with the algebra $\mathcal{A}=(A, F)$ if every $f \in F$ preserves ρ.Such a compatible relation is a (weak) congruence of \mathcal{A} if it is a (weak) equivalence. It is easy to see that a relation ρ is a weak congruence of \mathcal{A} if and only if it is a congruence of some subalgebra of \mathcal{A}. We denote bt $\operatorname{Con}(\mathcal{A})$ and $\mathrm{C}_{w}(\mathcal{A})$ the sets of all congruences and weak congruences of \mathcal{A}, respectively.

The domain of a relation $\alpha \in \operatorname{Rel}(X)$ is the set $\operatorname{dom}(\alpha)=\{x \in X \mid(x, x) \in \alpha\}$. For any $\alpha \in \operatorname{Rel}(X)$ we consider its restrictions to its domain $\alpha \upharpoonright \operatorname{dom}(\alpha)=$ $\alpha \cap(\operatorname{dom}(\alpha))^{2}=\{(x, y) \in \alpha \mid(x, x) \in \alpha,(y, y) \in \alpha\}$. It is easy to see that the symmetric and transitive closure of $\alpha \upharpoonright \operatorname{dom}(\alpha)$ is always a weak equivalence and we call it the weak equivalence generated by α. We stress that we form the closure of $\alpha \upharpoonright \operatorname{dom}(\alpha)$ and not of α itself. In fact, the symmetric and transitive closure of any relation is a weak equivalence.

Lemma 1. Let α be a weak equivalence on an algebra A. Then $\alpha \in \mathrm{C}_{w}(A)$ if and only if the following conditions hold:
(i) $\operatorname{dom}(\alpha)$ is a subalgebra of A;
(ii) every unary polynomial f of the algebra $\operatorname{dom}(\alpha)$ preserves α (i.e. $(x, y) \in \alpha$ implies $(f(x), f(y)) \in \alpha)$.

[^0]Proof. It is easy to see that any weak congruence satisfies (i) and (ii). Conversely, suppose that (i) and (ii) hold for $\alpha \in \operatorname{Eq}(A)$. Let $f: A^{n} \longrightarrow A$ be any of the basic operations of the algebra A. Suppose that $\left(a_{i}, b_{i}\right) \in \alpha$ for $i=1, \ldots, n$. Then clearly $a_{i} \in \operatorname{dom}(\alpha), b_{i} \in \operatorname{dom}(\alpha)$ for every i. Let us consider the unary polynomial $f_{1}(x)=f\left(x, a_{2}, \ldots, a_{n}\right)$. Because of (ii), $\left(a_{1}, b_{1}\right) \in \alpha$ implies that $\left(f_{1}\left(a_{1}\right), f_{1}\left(b_{1}\right)\right) \in \alpha$ and therefore $\left(f\left(a_{1}, \ldots, a_{n}\right), f\left(b_{1}, a_{2}, \ldots, a_{n}\right)\right) \in \alpha$. Similarly we can show that $\left(f\left(b_{1}, \ldots, b_{i}, a_{i+1}, \ldots, a_{n}\right), f\left(b_{1}, \ldots, b_{i+1}, a_{i+2}, \ldots, a_{n}\right)\right) \in$ α holds for any $i=0,1, \ldots, n-1$. From the transitivity of α we infer that $\left(f\left(a_{1}, \ldots, a_{n}\right), f\left(b_{1}, \ldots, b_{n}\right)\right) \in \alpha$.

Lemma 2. Let α be a compatible binary relation on an albebra A. Then the weak equivalence generated by α is also compatible. (And hence it is a weak congruence.)
Proof. Let $\beta \in \mathrm{E}_{w}(A)$ be generated by α. We prove that β satisfies (i), (ii) from Lemma 1.

It is easy to see that $\operatorname{dom}(\beta)=\operatorname{dom}(\alpha)$. Let $f: A^{n} \longrightarrow A$ be any of the basic operations of A, let $\left\{a_{1}, \ldots, a_{n}\right\} \subseteq \operatorname{dom}(\beta)$. Then $\left(a_{i}, a_{i}\right) \in \alpha$ for every i and since α is compatible we obtain that $\left(f\left(a_{1}, \ldots, a_{n}\right), f\left(a_{1}, \ldots, a_{n}\right) \in \alpha\right.$, hence $f\left(a_{1}, \ldots, a_{n}\right) \in \operatorname{dom}(\alpha)=\operatorname{dom}(\beta)$.

To prove (ii), let f be a unary polynomial of the algebra $\operatorname{dom}(\beta)$. (That is, the constants used in f belong to $\operatorname{dom}(\beta)$.) Let $(x, y) \in \beta$. Then we have a finite sequence $x=z_{0}, z_{1}, \ldots, z_{k}=y$ such that, for every $i=1, \ldots, k,\left(z_{i-1}, z_{i}\right) \in \alpha \upharpoonright$ $\operatorname{dom}(\alpha)$ or $\left(z_{i}, z_{i-1}\right) \in \alpha \upharpoonright \operatorname{dom}(\alpha)$. Since $\operatorname{dom}(\alpha)$ is closed under f (the first part of this proof) and the relation α is compatible, it follows that $\left(f\left(z_{i-1}, f\left(z_{i}\right)\right) \in \alpha \upharpoonright\right.$ $\operatorname{dom}(\alpha)$ or $\left(f\left(z_{i}\right), f\left(z_{i-1}\right)\right) \in \alpha \upharpoonright \operatorname{dom}(\alpha)$. Now $f(x)=f\left(z_{0}\right), f\left(z_{1}\right), \ldots, f\left(z_{k}\right)=$ $f(y)$ is the sequence showing that $(f(x), f(y)) \in \beta$.

Now we recall the definition of graphical compositions. A (undirected) graph is a pair (V, E) of sets V and E, whose elements are called vertices and edges, together with a map $\nu: E \longrightarrow \mathcal{P}_{1}(V) \cup \mathcal{P}_{2}(V)$, where $\mathcal{P}_{1}(V)$ and $\mathcal{P}_{2}(V)$ are the sets of all one element subsets and of all two element subsets of V, respectively. If $\nu(e)=\{x, y\}$, we say that e is an edge between x and y. If $\nu(e)=\{x, y\}$, we say that e is an edge between x and y. If $\nu(e)=\{x\}$, we say that e is a loop on x. Hence, we admit several edges with the same endpoints. (In [5], Werner excludes loops, but in the case of weak congruences they are useful.)

Let $G=(V, E)$ be a graph and let $\phi: E \longrightarrow \operatorname{Rel}(X)$ be a mapping. A function $f: V \longrightarrow X$ is called a ϕ-compatible labelling if, for every $e \in E, e=\{x, y\}$ implies that $(f(x), f(y)) \in \phi(e)$. (The case $x=y$ is included.) For every two distinguished vertices $0,1 \in V$ we define a relation

$$
S_{G, 0,1}(\phi)=\left\{(a, b) \in X^{2} \mid a=f(0), b=f(1) \text { for some } \phi \text {-compatible labelling } f\right\} .
$$

Thus, $S_{G, 0,1}$ is a mapping $\operatorname{Rel}(X)^{E} \longrightarrow \operatorname{Rel}(X)$. We define a mapping

$$
P_{G, 0,1}: \mathrm{E}_{w}(X)^{E} \longrightarrow \mathrm{E}_{w}(X)
$$

by the rule that $P_{G, 0,1}(\phi)$ is the weak equivalence generated by $S_{G, 0,1}(\phi)$. Hence, every coloured graph with two distinguished vertices determines a $|E|$-ary operation on the set $\mathrm{E}_{w}(X)$. Any such operation is called a graphical composition.

As an illustration, let us present two simple examples. (More examples can be found in [5].)

First, let G and ϕ be as follows.

(In pictures like this, each edge e is labelled by $\phi(e)$.) It is easy to see that $S_{G, 0,1}(\phi)=\alpha \cap \beta$. If α and β are weak equivalences, then $S_{G, 0,1}(\phi)$ is also a weak equivalence and therefore $P_{G, 0,1}(\phi)=S_{G, 0,1}(\phi)$. Hence, this graphical composition is the usual intersection of two relations. By adding more edges between 0 and 1 we obtain a graphical composition that describes the intersection of arbitrarily many (even of infinite number) relations.

As the second example we consider the following graph.

$$
0-\alpha=\frac{\beta}{\alpha} 1
$$

Suppose that $\alpha, \beta \in \mathrm{E}_{w}(X)$ and denote $Y=\operatorname{dom}(\alpha) \cap \operatorname{dom}(\beta)$. The restrictions $\alpha \upharpoonright Y$ and $\beta \upharpoonright Y$ are equivalences on the set Y. We claim that $P_{G, 0,1}(\phi)$ is the least equivalence on Y containing $\alpha \upharpoonright Y$ and $\beta \upharpoonright Y$ (the join in the lattice $E(Y)$). First, it is easy to see that $S_{G, 0,1}(\phi)$ is equal to the relational product

$$
\alpha \cdot \beta=\left\{(x, y) \in X^{2} \mid(x, z) \in \alpha,(z, y) \in \beta \text { for some } z \in X\right\}
$$

Since α and β are weak equivalences, it follows that $\operatorname{dom}\left(P_{G, 0,1}(\phi)\right)=\operatorname{dom}\left(S_{G, 0,1}(\phi)\right)=$ Y, hence $P_{G, 0,1}(\phi) \in E(Y)$. Further, $\alpha \upharpoonright Y \subseteq P_{G, 0,1}(\phi)$. Indeed, if $(x, y) \in \alpha \upharpoonright Y$, then $(y, y) \in \beta$, which shows that $(x, y) \in \alpha \cdot \beta \subseteq P_{G, 0,1}(\phi)$. For similar reasons, $\beta \upharpoonright Y \subseteq P_{G, 0,1}(\phi)$. On the other hand, if θ is any weak equivalence containing both $\alpha \upharpoonright y$ and $\beta \upharpoonright Y$, then also $S_{G, 0,1}(\phi) \upharpoonright Y=\alpha \upharpoonright Y \cdot \beta \upharpoonright Y \subseteq \theta$. Since $P_{G, 0,1}(\phi)$ is, by the definition, the least weak equivalence containing $S_{G, 0,1}(\phi) \upharpoonright Y$, it follows that $P_{G, 0,1}(\phi) \subseteq \theta$.

If $\alpha, \beta \in E(X)$, then $Y=X$ and $P_{G, 0,1}(\phi)$ is the usual join of equivalence relations. Hence, this graphical composition can be regarded as a generalization of the join operation to weak equivalences.
Lemma 3. Let A be an algebra, let $G=(V, E)$ be a graph, $0,1 \in V$. Suppose that $\phi: E \longrightarrow \operatorname{Rel}(A)$ is such that $\phi(e)$ is a compatible relation on \mathcal{A} for every $e \in E$. Then $S_{G, 0,1}(\phi)$ is also a compatible relation on \mathcal{A}.

Proof. Let $\left(a_{i}, b_{i}\right) \in S_{G, 0,1}(\phi)$ for $i=1, \ldots, k$. Let $g: A^{k} \longrightarrow A$ be any of the basic operations of \mathcal{A}. For every i we have a ϕ-compatible labelling $f_{i}: V \longrightarrow A$ with $f_{i}(0)=a_{i}, f_{i}(1)=b_{i}$. Define a function $f: V \longrightarrow A$ by $f(x)=g\left(f_{1}(x), \ldots, f_{k}(x)\right)$. Then $f(0)=g\left(a_{1}, \ldots, a_{k}\right), f(1)=g\left(b_{1}, \ldots, b_{k}\right)$. It remains to show that f is a ϕ compatible labelling.

Let $e \in E, e=\{x, y\}$. Then $\left(f_{i}(x), f_{i}(y)\right) \in \phi(e)$ for every $i=1, \ldots, k$. Since, by the assumption, the relation $\phi(e)$ is compatible, we obtain that $(f(x), f(y))=$ $\left(g\left(f_{1}(x), \ldots, f_{k}(x)\right), g\left(f_{1}(y), \ldots, f_{k}(y)\right)\right) \in \phi(e)$.

As a consequence of Lemma 2 and Lemma 3 we obtain the following assertion.
Lemma 4. Let $\mathcal{A}=(A, F)$ be an algebra. Then $\mathrm{C}_{w}(\mathcal{A})$ is a subset of $\mathrm{E}_{w}(A)$ closed under all graphical compositions (i.e. for any graph G with two distinguished vertices, if $\phi: E \longrightarrow \mathrm{C}_{w}(A)$ then also $\left.P_{G, 0,1}(\phi) \in \mathrm{C}_{w}(\mathcal{A})\right)$.

Now we show that closedness under all graphical compositions is not sufficient for characterization of those subsets of $\mathrm{E}_{w}(X)$ that are equal to $\mathrm{C}_{w}(\mathcal{A})$ for some
algebra \mathcal{A} defined on the set X. (Similarly as in the case of usual congruence relations.)

To see this, let \mathcal{A} be an algebra whose congruence lattice looks as follows.

Such an algebra \mathcal{A} certainly exists, since the lattice is algebraic. We can assume that all elements of \mathcal{A} are nullary operations (constants), so that $\mathrm{C}_{w}(\mathcal{A})=\operatorname{Con}(\mathcal{A})$ and our example serves both the case of usual and weak congruences. Let us consider the family $\mathcal{F}=\left\{\Delta, \nabla, \theta_{1}, \theta_{2}, \ldots\right\}=\operatorname{Con}(\mathcal{A}) \backslash\{\psi\}$. This family cannot be the set of all (weak) congruences of any algebra, since it is not a complete sublattice of $\operatorname{Eq}(A)$. (It is not closed under infinite joins.) However, we claim that \mathcal{F} is closed under all graphical compositions.

To see this, let $G=(V, E)$ be a graph, $0,1 \in V, \phi: E \longrightarrow \mathcal{F}$. Without loss of generality we can assume that $\nabla \notin \phi(E)$. Indeed, if $\nabla \in \phi(E)$, then we consider the graph $G^{\prime}=\left(V, E^{\prime}\right)$, where $E^{\prime}=\{e \in E \mid \phi(e) \neq \nabla\}$, and the restriction $\phi^{\prime}=\phi \upharpoonright E^{\prime}$. It is easy to see that $S_{G, 0,1}(\phi)=S_{G^{\prime}, 0,1}\left(\phi^{\prime}\right)$.

Thus, suppose that $\nabla \notin \phi(E)$. We distinguish two cases. First, suppose that there is a path $\left(e_{1}, \ldots, e_{k}\right)$ in E connecting 0 and 1 . Then $P_{G, 0,1}(\phi)$ cannot be greater (in the sense of set inclusion) than the greatest relation among $\phi\left(e_{1}\right), \ldots, \phi\left(e_{k}\right)$. Hence, $P_{G, 0,1}(\phi)$ is equal to Δ or to some θ_{i}.

The second possibility is that there is no path between 0 and 1 . Then it is not difficult to see that $P_{G, 0,1}(\phi)=S_{G, 0,1}(\phi)=A^{2}=\nabla$.

We have proved that $P_{G, 0,1}(\phi)$ cannot be equal to ψ, which means that \mathcal{F} must be closed under all graphical compositions.

The example above suggests what we should add to graphical compositions. A family $\mathcal{F} \subseteq \mathrm{E}_{w}(X)$ is called up-directed if for every $\alpha, \beta \in \mathcal{F}$ there is a $\gamma \in \mathcal{F}$ with $\alpha \cup \beta \subseteq \gamma$. It is easy to see that if \mathcal{F} is such an up-directed family, then the set-theretical union $\bigcup \mathcal{F}$ is a weak equivalence. Further, if all relations in \mathcal{F} are compatible with some algebraic structure on X, then $\bigcup \mathcal{F}$ is also compatible (and hence a weak congruence). We obtain the following assertion.

Lemma 5. For any algebra \mathcal{A}, the set $\mathrm{C}_{w}(\mathcal{A})$ is closed under unions of up-directed families $\mathcal{F} \subseteq \mathrm{C}_{w}(\mathcal{A})$.

Now we are going to prove the converse of Lemmas 4 and 5. Let us suppose that $\mathcal{F} \subseteq \mathrm{E}_{w}(X)$ is closed under all graphical compositions and up-directed unions.

First notice that \mathcal{F} is closed under intersections. (See the example preceding Lemma 2. In accordance with this example, the intersection of the empty family of
relations is equal to the greatest relation X^{2}.) Hence, for every $\alpha \in \operatorname{Rel}(X)$ there is a smallest $\beta \in \mathcal{F}$ with $\alpha \subseteq \beta$. We use the denotation $\beta=\alpha^{\mathcal{F}}$.

We shall use some special graphs. Let G be the graph, whose set of vertices is X and the number of edges between vertices x and y is equal to the number of all $\alpha \in \mathcal{F}$ containing (x, y). (This applies also to loops.) Formally, the set E of edges can be expressed as $E=\{(\{x, y\}, \alpha) \mid x, y \in X, \alpha \in \mathcal{F}$ and $(x, y) \in \alpha\}$ and the map ν is defined by $\nu((\{x, y\}, \alpha))=\{x, y\}$.

Similarly we define the graph G^{n} (the n-th power of G). The set of vertices of G^{n} will be X^{n} and we put an edge $(\{\bar{x}, \bar{y}\}, \alpha)$ between $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\bar{y}=\left(y_{1}, \ldots, y_{n}\right)$ whenever $\left(x_{i}, y_{i}\right) \in \alpha$ for every $i=1, \ldots, n$. Hence, $G=G^{1}$.

The importance of the graphs defined above lies in the following easy fact.
Lemma 6. Let $\varphi: E \longrightarrow \mathcal{F}$ be defined by $\varphi((\{\bar{x}, \bar{y}\}, \alpha))=\alpha$. A function $f:$ $X^{n} \rightarrow X$ is a φ-compatible labelling on G^{n} if and only if f preserves all $\alpha \in \mathcal{F}$.

Now we are ready to define an algebra on the set X whose set of all equivalences equals \mathcal{F}.

Lemma 7. Let \mathcal{G} be the set of all finitary operations on X that preserve every $\alpha \in \mathcal{F}$. Let \mathcal{A} be the algebra with X as the underlying set and \mathcal{G} as the set of basic operations. Then $\mathcal{F}=\mathrm{C}_{w}(\mathcal{A})$.

Proof. By the definition, every basic operation of \mathcal{A} preserves all relations in \mathcal{F}, hence $\mathcal{F} \subseteq \mathrm{C}_{w}(A)$.

To prove the other inclusion, let $\alpha \in \mathrm{C}_{w}(\mathcal{A})$, i.e. α is a weak equivalence on X that is preserved by all $f \in \mathcal{G}$.

Let $\beta=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right\}$ be an arbitrary finite subset (subrelation) of α. Consider the graph G^{n} with $n=3 k$. We distinguish the vertices
$0=\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}, x_{1}, \ldots, x_{k}\right)$,
$1=\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}, y_{1}, \ldots, y_{k}\right)$.
Let φ be defined by $\varphi((\{\bar{x}, \bar{y}\}, \alpha))=\alpha$. By our assumption, the relation $P_{G^{n}, 0,1}(\varphi)$ belongs to \mathcal{F}. It is easy to see that for every $i=1, \ldots, n$ the i-th projection $f_{i}: \quad X^{n} \rightarrow X$ (i.e. $\left.f_{i}\left(z_{1}, \ldots, z_{n}\right)=z_{i}\right)$ is a φ-compatible labelling. For $i=$ $1, \ldots, k$ we obtain that $\left(f_{i}(0), f_{i}(1)\right)=\left(x_{i}, x_{i}\right) \in S_{G^{n}, 0,1}(\varphi),\left(f_{i+k}(0), f_{i+k}(1)\right)=$ $\left(y_{i}, y_{i}\right) \in S_{G^{n}, 0,1}(\varphi),\left(f_{i+2 k}(0), f_{i+2 k}(1)\right)=\left(x_{i}, y_{i}\right) \in S_{G^{n}, 0,1}(\varphi)$. Consequently, $\beta \subseteq S_{G^{n}, 0,1}(\varphi) \upharpoonright \operatorname{dom}\left(S_{G^{n}, 0,1}(\varphi)\right)$, hence $\beta \subseteq P_{G^{n}, 0,1}(\varphi)$.

Further, for every $(x, y) \in S_{G^{n}, 0,1}(\varphi)$ there is a φ-compatible labelling $f: X^{n} \rightarrow$ X with $f(0)=x, f(1)=y$. By Lemma $6, f \in \mathcal{G}$ and by our assumption, f preserves α. Since for every $i=1, \ldots, k$ we have $\left(x_{i}, x_{i}\right) \in \alpha,\left(y_{i}, y_{i}\right) \in \alpha,\left(x_{i}, y_{i}\right) \in \alpha$, it follows that $(x, y)=(f(0), f(1)) \in \alpha$. We have shown that $S_{G^{n}, 0,1}(\varphi) \subseteq \alpha$. Since α is a weak equivalence, we obtain that $P_{G^{n}, 0,1}(\varphi) \subseteq \alpha$.

Hence, for every such β there is $\gamma \in \mathcal{F}$ with $\beta \subseteq \gamma \subseteq \alpha$ (namely, $\gamma=P_{G^{n}, 0,1}(\varphi)$, where the number n and the vertices 0,1 depend on β). Then clearly $\beta^{\mathcal{F}} \subseteq \alpha$. The family

$$
\left\{\beta^{\mathcal{F}} \mid \beta \text { is a finite subset of } \alpha\right\}
$$

is an up-directed subset of \mathcal{F} and its union is α. Since \mathcal{F} is closed under updirected unions, we obtain that $\alpha \in \mathcal{F}$, which was to prove.

From Lemmas 4, 5 and 7 we obtain our main result.

Theorem 8. A family $\mathcal{F} \subseteq \mathrm{E}_{w}(X)$ is the set of all weak congruences of some algebra if and only if \mathcal{F} is closed under all graphical compositions and up-directed unions.

References

[1] B. Jónsson, Topics in Universal Algebra, Lecture Notes in Math. 250, Springer-Verlag, 1972.
[2] B. Sešelja, A. Tepavčević, Infinitely distributive elements in the lattice of weak congruences, in: General Algebra 6, Elsevier (North Holland), 1990, 241-253.
[3] G. Vojvodić, B. Šešelja, On the lattice of weak congruence relations, Algebra Universalis 25 (1988), 121-130.
[4] G. Vojvodić, B. Šešelja, The diagonal relation in the lattice of weak congruences and the representation of lattices, Review of Research Fac. Sci. Univ. Novi Sad 19 (1989), 167-178.
[5] H. Werner, Which partition lattices are congruence lattices?, in: Lattice theory (Coll. Math. Soc. J. Bólyai 14), North Holland, 1976, 433-453.

Mathematical Institute, Slovak Academy of Sciences, Grešákova 6, 04001 Košice, Slovakia

E-mail address: ploscica@saske.sk

[^0]: 1991 Mathematics Subject Classification. primary 08A30, 08A40.

