
AFFINE COMPLETE DISTRIBUTIVE LATTICES
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Abstract. We prove a characterization theorem for affine complete distributive

lattices. To do so we introduce the notions of relatively complete ideal and relatively

complete filter.

1. Introduction

A k-ary function f on a lattice L is called compatible if for any congruence θ
on L and (ai, bi) ∈ θ, i = 1, . . . , k, (f(a1, . . . , ak), f(b1, . . . , bk)) ∈ θ holds. It is
clear that any polynomial of a lattice L is compatible. Following Schweigert [3] and
Werner [4], a lattice L is called affine complete if every compatible function on L
is a polynomial.

No internal characterization of affine complete lattices is known. However, in
the case of bounded distributive lattices we have the following result of G. Grätzer.
An interval in a lattice is called proper if it contains more than one element.

1.1. Theorem ([2]). A bounded distributive lattice is affine complete if and only
if it does not contain a proper interval which is a Boolean lattice. ¤

The aim of this paper is to prove a characterization theorem for (in general
unbounded) distributive lattices. In the proof we will use the following results due
to D. Dorninger and G. Eigenthaler.

1.2. Lemma ([1, p. 102]). Suppose that every unary compatible function on a
distributive lattice L is a polynomial. Then L is affine complete. ¤

1.3. Lemma ([1, p. 100]). Let L be an arbitrary lattice. If L contains a proper
Boolean interval, then there is a compatible function on L which is not order-
preserving (and hence which cannot be a lattice polynomial). ¤

2. Main results

For an element x of a lattice L, let us denote ↑x = {y ∈ L |x ≤ y}, ↓x = {y ∈
L |x ≥ y}.
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2.1. Definition. An ideal I of a lattice L is called relatively complete if for every
x ∈ L there exists max(I ∩ ↓x). Dually, a filter F of a lattice L is called relatively
complete if for every x ∈ L there exists min(F ∩ ↑x).

It is clear that if an ideal has a largest element, then it is relatively complete.
Indeed, if I =↓b then max(I ∩↓x) = x∧b. However, there exist relatively complete
ideals without a largest element.

An ideal I of a lattice L is proper if I 6= L.

2.2. Theorem. Let I be a proper relatively complete ideal of a distributive lattice
L. Suppose that I does not posess a largest element. Then the lattice L is not affine
complete.

Proof. Let us define a function f : L −→ L by the rule f(x) = max(I ∩ ↓x). We
will prove that f is compatible and not polynomial.

Let θ be a congruence on L and (x, y) ∈ θ. We claim that f(x∧y) = f(x)∧x∧y.
It is clear that f(x∧y) ≤ f(x) and f(x∧y) ≤ x∧y, hence f(x∧y) ≤ f(x)∧x∧y. On
the other hand, the element f(x)∧x∧y belongs to I∩ ↓(x∧y), hence f(x)∧x∧y ≤
f(x∧y). Now (x, y) ∈ θ implies that (x, x∧y) ∈ θ and also (x∧f(x), x∧y∧f(x)) ∈ θ,
hence (f(x), f(x ∧ y)) ∈ θ. Similarly one can show that (f(y), f(x ∧ y)) ∈ θ, thus
(f(x), f(y)) ∈ θ.

It remains to show that f is not a polynomial. Clearly, any unary polynomial g
on a distributive lattice L must be either identity or of the form g(x) = a ∨ x or
g(x) = b ∧ x or g(x) = (a ∨ x) ∧ b for suitable a, b ∈ L, a ≤ b.

Since the ideal I is proper, f is not an identity. It is easy to see that I is the set
of all fixed points of the function f . The function f cannot be of the form b ∧ x or
(a ∨ x) ∧ b, because these functions have the largest fixed points, while f has not.
Finally, f cannot be of the form a ∨ x, because the set of all fixed points of this
function is ↑a, which is an ideal only in the case ↑a = L, hence ↑a 6= I. ¤

2.3. Corollary. If a distributive lattice contains a proper relatively complete filter
without a smallest element, then it is not affine complete. ¤

2.4. Lemma. Let f : L −→ L be a compatible function on a distributive lattice
L. Let x ∈ L. If there exists y ∈ L such that x ≤ y and x ≤ f(y), then the set ↑x
is closed under f . Dually, if x ≥ y and x ≥ f(y) for some y ∈ L, then the set ↓x
is closed under f .

Proof. Let y ∈ L be such that x ≤ y and x ≤ f(y). For a contradiction, suppose
that z ∈ ↑x and f(z) /∈ ↑x. Then there is a prime ideal I such that x /∈ I and
f(z) ∈ I. Let θ be the congruence on L whose equivalence classes are I and L \ I.
Then (y, z) ∈ θ and (f(y), f(z)) /∈ θ, which contradicts the compatibility of f . ¤

2.5. Corollary. If the set ↓x or ↑x contains a fixed point of f , then it is closed
under f . ¤

2.6. Lemma. Let f : L −→ L be a compatible function on a distributive lattice
L. Suppose that L does not contain a proper Boolean interval. Then

(i) f ◦ f = f ;
(ii) the set of all fixed points of f is convex;
(iii) the set ↓f(L) =

⋃
x∈L

↓f(x) is a relatively complete ideal in L.
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Proof. (i) Let x ∈ L. The interval M = [x∧f(x), x∨f(x)] is closed under f because
it is an intersection of the sets ↑(x∧f(x)) and ↓(x∨f(x)), which are closed under f
by 2.4. The restriction g = f ¹ M is a compatible function on the lattice M . Indeed,
any congruence on M can be extended to a congruence on L, so f must preserve
it. By 1.1, the lattice M is affine complete, hence g(y) = (a ∨ y) ∧ b for suitable
a, b ∈ M , a ≤ b. It is easy to verify that g(g(y)) = g(y) holds for every y ∈ M .
Since x ∈M and f(x) ∈M , we obtain that f(f(x)) = g(g(x)) = g(x) = f(x).

(ii) Let a and b be fixed points of f , a < b. We have to prove that the whole
interval [a, b] consists of fixed points. By 2.5, the sets ↑a and ↓b are closed under f ,
therefore also [a, b] = ↑a ∩ ↓b is closed under f . Similarly as in (i), the restriction
g = f ¹ [a, b] must be a polynomial. Hence, g(y) = (c∨y)∧d for suitable c, d ∈ [a, b],
c ≤ d. Since g(a) = a, g(b) = b, we obtain that a = c and b = d, which means that
g is an identity. Thus, f(x) = x for any x ∈ [a, b].

(iii) First we show that max(↓f(L) ∩ ↓x) = x ∧ f(x) holds for every x ∈ L.
Clearly, x ∧ f(x) ∈ ↓f(L) ∩ ↓x. Let y be an arbitrary element of ↓f(L) ∩ ↓x. We
need to show that y ≤ x ∧ f(x). Since y ∈ ↓f(L), the set ↑ y contains an element
of f(L), i. e. fixed point of f . By 2.5, the set ↑ y is closed under f , hence y ≤ x
implies that y ≤ f(x) and therefore y ≤ x ∧ f(x).

It remains to prove that the set ↓f(L) is an ideal, i. e. that it is closed under joins.
But it is easy to see that if a, b ∈ ↓f(L), then a, b ≤ max(↓f(L)∩↓(a ∨ b)) ≤ a∨ b,
hence max(↓f(L) ∩ ↓(a ∨ b)) = a ∨ b. This implies that a ∨ b ∈ ↓f(L). ¤

2.7. Theorem. A distributive lattice L is affine complete if and only if the fol-
lowing conditions are satisfied:

(i) L does not contain a proper Boolean interval;
(ii) L does not contain a proper relatively complete ideal without a largest ele-

ment;
(iii) L does not contain a proper relatively complete filter without a smallest

element.

Proof. If some of the above conditions is not fulfilled, then L is not affine complete
by 1.3, 2.2 or 2.3. Suppose now that L satisfies (i), (ii) and (iii). We have to prove
that any compatible function is a polynomial. In view of 1.2, it suffices to consider
unary functions.

Let f : L −→ L be a compatible function. If the set f(L) does not have a
largest element, then ↓f(L) is a relatively complete ideal without a largest element
and therefore ↓f(L) = L. Similarly, if f(L) does not have a smallest element, then
↑f(L) = L. We distinguish four cases.

Suppose that f(L) has neither a largest nor a smallest element. Then ↑f(L) =
L = ↓f(L). For every x ∈ L there are a, b ∈ f(L) with a ≤ x ≤ b. By 2.6, f(L) is
the set of all fixed points of f , which is convex. That is why x ∈ f(L), hence x is
also a fixed point. We have shown that f is an identity, which is a polynomial.

Suppose that f(L) has a smallest element u and does not have a largest element.
Then ↓f(L) = L and the convexity of f(L) implies that f(L) = ↑u. Let x ∈ L. By
2.5 the sets ↑x and ↓(x∨u) are closed under f . (They contain x∨u ∈ f(L).) Thus,
f(x) ∈ ↑x∩↓(x ∨ u). Further, f(x) ∈ ↑u = f(L), hence f(x) ∈ ↑x∩↑u∩↓(x ∨ u) =
{x∨u}. We infer that for every x ∈ L, f(x) = x∨u and therefore f is a polynomial.

Analogously, if f(L) has a largest element v and no smallest element, then f(x) =
x ∧ v holds for every x ∈ L.
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The remaining case is that f(L) has a smallest element u and a largest element v.
From the convexity of f(L) we infer that f(L) is the interval [u, v]. For any x ∈ L the
sets ↓(x ∨ u) and ↑(x ∧ v) are closed under f . (They contain the fixed points u and
v, respectively.) Thus, f(x) ∈ ↓(x ∨ u) and f(x) ∈ ↑(x ∧ v). Further, f(x) ∈ ↑u
and f(x) ∈ ↓v. We obtain that f(x) ∈ ↓((x ∨ u) ∧ v), f(x) ∈ ↑((x ∧ v) ∨ u) and
therefore f(x) = (x ∧ v) ∨ u. This completes the proof. ¤

Now we present some examples. First, the direct product R×R of the real line
with itself is not affine complete. It contains the proper relatively complete ideal

I = {(x, y) ∈ R×R |x ≤ 0}

without a largest element. The theorem 2.2 shows how to construct a compatible
function which is not a polynomial.

On the other hand, the sublattice L of R×R given by the formula

L = {(x, y) ∈ R×R |x− 1 ≤ y ≤ x+ 1}

is affine complete. Indeed, it is not hard to see that any proper ideal of L has an
upper bound in L. And, if b is an upper bound of an ideal I, then max(I ∩ ↓b) =
max I.

The above example suggests a question if the condition 2.7(ii) could be replaced
by a stronger condition

(ii’) Every proper ideal of L is bounded.

The negative answer to this question is demonstrated by the following example.
Let

L = {(x, y) ∈ R×R | 0 ≥ x ≥ y ≥ −1} \ {(0, 0)}.

The lattice L contains the unbounded proper ideal

I = {(x, y) ∈ L |x < 0}.

Nevertheless, the lattice L is affine complete. In fact, I is the only unbounded
proper ideal and it is not relatively complete.

Our final remark concerns nondistributive affine complete lattices. There seems
to be no example of such a lattice. There are only a few negative results. By [1,
p. 100], if a lattice contains a proper subdirectly irreducible interval, then it is not
affine complete. Thus, natural questions arises, whether there exist affine complete
nondistributive lattices.
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