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Abstract. The critical point between two classes K and L of algebras is the cardinal-
ity of the smallest semilattice isomorphic to the semilattice of compact congruences

of some algebra in K, but not in L. Our paper is devoted to the problem of de-

termining the critical point between two finitely generated congruence-distributive
varieties. For a homomorphism ϕ : S → T of (0,∨)-semilattices and an automor-

phism τ of T , we introduce the concept of a τ -symmetric lifting of ϕ. We use it to
prove a criterion, which ensures that the critical point between two finitely generated

congruence-distributive varieties is less or equal to ℵ1. We illustrate the criterion by

constructing two new examples with the critical point exactly ℵ1.

1. Introduction

For a class K of algebras we denote ConK the class of all lattices isomorphic

to Con(A) (the congruence lattice of an algebra A) for some A ∈ K. Despite

many partial results, a good description of ConK has proved to be a very

difficult (and probably intractable) problem, even for the most common classes

of algebras. A more promising approach seems to be to compare the classes

ConK and ConL for different K and L. The following definition of a critical

point has been introduced by P. Gillibert in his thesis. ([3], see also [4] or [7].)

Let Lc denote the set of all compact elements of an algebraic lattice L.

Definition 1.1. Let K and L be classes of algebras. The critical point of K
under L, denoted crit(K,L), is the smallest cardinality of Lc for L ∈ ConK \
ConL (if ConK * ConL) or ∞ (if ConK ⊆ ConL).

We are mainly interested in the case when K and L are varieties of algebras.

For most of pairs of varieties, the critical point is either finite or ℵ0. Examples

with an uncountable critical point are quite rare and the proofs are difficult.

First examples with the critical point ℵ2 have been exhibited in [9] and [10].

More ℵ2 examples are contained in [5]. The first example with the critical

point ℵ1 has been presented in [4]. The result from [11] shows that the critical

point between the variety of all majority algebras and the variety of all lattices

is ℵ2.

The following recent result says that, under some reasonable restrictions,

the critical point cannot be greater than ℵ2.
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Theorem 1.2. (See [6].) Let K and L be locally finite varieties of algebras.

Assume that for each finite A ∈ K there are, up to isomorphism, only finitely

many B ∈ L such that ConA ∼= ConB, and every such B is finite. Then

either crit(K,L) ≤ ℵ2 or ConK ⊆ ConL.

So, under the above restrictions, the critical point can be finite, ℵ0, ℵ1,

ℵ2, or ∞. There are several methods how to distinguish these cases, but no

algorithm is known, not even in the most tractable situation when K and L
are both finitely generated, congruence-distributive varieties. In this paper we

use the method of lifting of semilattice diagrams. Other known methods are

based on a topological representation of congruence lattices (see e.g. [9]) and

on various refinement properties (e.g. [13], [14], [15], [16], [11]).

The present paper is devoted to the least investigated case: the critical point

ℵ1. Based on Gillibert’s result (see Theorem 2.1), we prove a new upper bound

criterion, using a concept of a τ -symmetric lifting. This allows to investigate

diagrams indexed by a chain, instead of diagrams indexed by products of two

chains. We also present two examples, demonstrating the use of our result.

Now we recall basic denotations and facts. We assume familiarity with

the fundamentals of lattice theory and universal algebra. For all undefined

concepts and unreferenced facts we refer to [8] and [2].

The smallest and the largest congruence on A will be denoted by 0A and

1A, respectively. The congruence lattice of ConA of an algebra A is always

algebraic and its compact elements form a (0,∨)-subsemilattice of ConA, de-

noted ConcA. Recall that the semilattice ConcA determines the lattice ConA

uniquely. For x, y ∈ A let θ(x, y) denote the smallest congruence containing

the pair (x, y). The semilattice Conc(A) consists precisely of all finitely gen-

erated congruences, i.e. congruences of the form θ(x1, y1) ∨ · · · ∨ θ(xn, yn).

The smallest congruence (the equality relation) is considered as compact, so

ConcA always has the smallest element. If f : A→ B is a homomorphism of

algebras, then we define Con f : ConA→ ConB by the rule that (Con f)(α)

is the congruence on B generated by all pairs (f(x), f(y)) with (x, y) ∈ α. The

restriction of Con f to ConcA is a mapping Conc f : ConcA→ ConcB. It is

easy to see that Conc f is a homomorphism of (0,∨)-semilattices.

Now, every (0,∨)-homomorphism ϕ : K → L between complete lattices K

and L determines the mapping ϕ← : L→ K by the rule

ϕ←(β) =
∨
{α | ϕ(α) ≤ β}.

If ϕ = Conc f for a homomorphism f : A→ B of finite algebras, then

(Conc f)←(β) = {(x, y) ∈ A2 | (f(x), f(y)) ∈ β}.

The pair (ϕ,ϕ←) is sometimes referred to as residuated mappings. The

following facts are rather well known. (See [1], Section 1.3.)

Lemma 1.3. Let ϕ : K → L be a (0,∨)-homomorphism of finite lattices.

(1) ϕ← preserves ∧ and the largest element.
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(2) ϕ(α) =
∧
{β | α ≤ ϕ←(β)} for every α ∈ L.

(3) If ψ : L → M is another (0,∨)-homomorphism of finite lattices, then

(ψϕ)← = ϕ←ψ←.

We need some basic facts about congruences on direct products. If algebras

B1, B2 belong to a congruence-distributive variety, then the lattice Con(B1 ×
B2) is isomorphic to the direct product of lattices ConB1×ConB2. (See [2].)

The isomorphism ι : ConB1 × ConB2 → Con(B1 × B2) maps every pair

(β1, β2) into the product congruence β1 × β2 = {((x1, x2), (y1, y2)) | (xi, yi) ∈
βi}. Taking into account this isomorphism we also have the following assertion.

Recall that any two mappings f1 : A → B1 and f2 : A → B2 induce the

product mapping f1 × f2 : A→ B1 ×B2.

Lemma 1.4. Let fi : A → Bi (i = 1, 2) be homomorphisms of algebras

belonging to a congruence-distributive variety. Then Con(f1 × f2) = Con f1 ×
Con f2.

Proof. Let α ∈ ConA. We know that Con(f1 × f2)(α) is a congruence on

B1 × B2, hence it is the product β1 × β2 for some βi ∈ ConBi (i = 1, 2). We

just need to show that βi = (Con fi)(α).

The congruence Con(f1 × f2)(α) is generated by all pairs of the form

((f1 × f2)(x), (f1 × f2)(y)) with (x, y) ∈ α. Every such pair clearly belongs to

(Con f1)(α)× (Con f2)(α), so βi ⊆ (Con fi)(α). On the other hand, for every

(f1(x), f1(y)) ∈ (Con f1)(α) we have ((f1 × f2)(x), (f1 × f2)(y)) ∈ β1 × β2, so

(Con f1)(α) ⊆ β1, and similarly (Con f2)(α) ⊆ β2. �

Recall that if α ∈ ConA, then the congruence lattice of the quotient algebra

A/α is isomorphic to the interval [α, 1A] of ConA. In this isomorphism, every

δ ∈ [α, 1A] corresponds to δ/α = {(x/α, y/α) | x, y ∈ δ} ∈ Con(A/α). (By

x/α we denote the α-equivalence class containing x.)

Lemma 1.5. Let D be any algebra with ConD distributive, let L1 and L2 be

distributive lattices. Further, let Φ : ConD → L1 × L2 be an isomorphism of

distributive lattices. Then there are α1, α2 ∈ ConD with α1 ∧ α2 = 0A and

isomorphisms Φi : Con(D/αi)→ Li such that

Φ(δ) = (Φ1(δ ∨ α1/α1),Φ2(δ ∨ α2/α2))

for every δ ∈ ConD.

Proof. Take α1, α2 with Φ(α1) = (0, 1), Φ(α2) = (1, 0). (Notice that both

Li must be bounded, because ConD is bounded.) The isomorphism Φ maps

the interval [α1, 1D] onto the interval [(0, 1), (1, 1)], so there is an isomorphism

Ψ1 : [α1, 1D] → L1 with Φ(δ) = (Ψ1(δ), 1) for every δ ∈ [α1, 1D]. Similarly,

we have an isomorphism Ψ2 : [α2, 1D]→ L1 with Φ(δ) = (1,Ψ2(δ)) for every

δ ∈ [α2, 1D]. Now we define Φi by Φi(δ/αi) = Ψi(δ). By the distributivity

we have Φ(δ) = Φ(δ ∨ α1) ∧ Φ(δ ∨ α2) = (Ψ1(δ ∨ α1), 1) ∧ (1,Ψ2(δ ∨ α2)) =

(Φ1(δ ∨ α1/α1)),Φ2(δ ∨ α2/α2)) for every δ ∈ ConD. �
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The above Lemma also means that D is isomorphic to a subdirect product

of D/α1 and D/α2 and ConD is isomorphic to Con(D/α1)×Con(D/α2). If ι

is the natural embedding of D into D/α1×D/α2, that is ι(x) = (x/α1, x/α2),

then Con ι is an isomorphism which maps δ ∈ ConD to (δ∨α1/α1, δ∨α2/α2).

If f : X → Y is a mapping then rng f denotes the range of this mapping,

and Ker f (the kernel of f) is the binary relation on X defined by (x, y) ∈ Ker f

iff f(x) = f(y).

2. Lifting of semilattice diagrams

Let P be an ordered set. Let K be a class of algebras. A P -indexed diagram
~A in K consists of a family (Ap, p ∈ P ) of algebras in K and a family (fp,q, p ≤
q) of homomorphisms fp,q : Ap → Aq such that fp,p is the identity on Ap and

fp,r = fq,rfp,q for all p ≤ q ≤ r.
For any such diagram ~A we consider the diagram Conc ~A of semilattices with

0, which consists of the family (ConcAp, p ∈ P ) and the mappings Conc fp,q :

ConcAp → ConcAq. It is easy to see that Conc ~A is a P -indexed diagram of

(0,∨)-semilattices.

Now let ~A = (Ap, fp,q | p ≤ q in P ) be a P -indexed diagram of nonempty

algebras in K and let ~S = (Sp, gp,q | p ≤ q in P ) be a P -indexed diagram

of (0,∨)-semilattices. We say that ~A is a lifting of ~S (or that ~A lifts ~S)

if the diagrams ~S and Conc ~A are isomorphic, which means that there are

isomorphisms ϕp : ConcAp → Sp, p ∈ P such that the diagram

ConcAp
Conc fp,q−−−−−−→ ConcAq

ϕp

y ϕq

y
Sp

gp,q−−−−→ Sq

commutes for every p ≤ q.
We use the following result. (See [4], Corollaries 7.6 and 7.12, or [7], Theo-

rem 4.9.2 and Corollary 4.9.7.)

Theorem 2.1. Let K and L be finitely generated congruence-distributive va-

rieties of algebras and n a nonnegative integer. Then (ii) implies (i), where

(i) crit(K,L) ≤ ℵn;

(ii) there exists a diagram of finite (∨, 0)-semilattices indexed by a product of

n+ 1 finite chains liftable in K but not in L
If n = 0 then also (i)=⇒ (ii).

We need the above theorem for n = 0 and n = 1. In the case n = 1 we use

the following, slightly modified form.

Theorem 2.2. Let K and L be finitely generated congruence-distributive va-

rieties of algebras with crit(K,L) > ℵ1. Let fi : Ai → B (i ∈ {1, 2}) be
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homomorphisms of finite algebras in K such that rng f1∩ rng f2 6= ∅. Then the

diagram

ConcA1
Conc f1−−−−−→ ConcB

Conc f2←−−−−− ConcA2
(*)

has a lifting

C1
g1−−−−→ D

g2←−−−− C2.

in L such that rng g1 ∩ rng g2 6= ∅.

Proof. The pullback A0 = {(x, y) ∈ A1 × A2 | f1(x) = f2(y)}, of A1 and

A2 with respect to f1 and f2, is a subalgebra of A1 × A2. According to our

assumption, it is nonempty. Further, let pi : A0 → Ai (i ∈ {1, 2}) be the

projections. Then

A1
f1−−−−→ B

p1

x f2

x
A0

p2−−−−→ A2

is a commutative diagram in K indexed by the product of two 2-element chains.

By Theorem 2.1, the diagram

ConcA1
Conc f1−−−−−→ ConcB

Conc p1

x Conc f2

x
ConcA0

Conc p2−−−−−→ ConcA2

has a lifting

C1
g1−−−−→ D

q1

x g2

x
C0

q2−−−−→ C2

in L. It is easy to see that g1 and g2 form a lifting of (*). The condition

rng g1 ∩ rng g2 6= ∅ follows from C0 6= ∅. �

3. Symmetries of liftings

Let ϕ : S → T be a homomorphism of (∨, 0)-semilattices and let τ be

an automorphism of T . A τ -symmetric lifting of ϕ in a variety K consists of

algebras A1, A2, B1, B2 ∈ K, homomorphisms fij : Ai → Bj , isomorphisms

ψi : ConcAi → S and τij : ConcBj → T such that

rng(f11 × f12) ∩ rng(f21 × f22) 6= ∅,

the diagram

ConcAi
Conc fij−−−−−→ ConcBj

ψi

y τij

y
S

ϕ−−−−→ T
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commutes for every i, j ∈ {1, 2}, and

τ = τ11τ
−1
21 τ22τ

−1
12 .

Hence, a τ -symmetric lifting consists of four liftings bound together by the

above equality and the condition that ψi serves both τi1 and τi2. Let us remark,

that a “simplified definition” using f11 and f21 only would not work. Indeed,

if ϕ has liftings fi1 : Ai → B1, then τi1 can be any isomorphism ConcB1 → T

with a suitable choice of ψi, so τ11τ
−1
21 can be any automorphism on T . That’s

why four liftings are needed in order to define a nontrivial concept.

Now we can prove our main result.

Theorem 3.1. Let K and L be finitely generated congruence-distributive vari-

eties with crit(K,L) > ℵ1. Let ϕ : S → T be a homomorphism of finite (∨, 0)-

semilattices and let τ be an automorphism of T . Let ϕ have a τ -symmetric

lifting in K. Then ϕ also has a τ -symmetric lifting in L.

Proof. Let Ai, Bi, fij , ψi, τij form a τ -symmetric lifting of ϕ in K. In a

finitely generated congruence-distributive variety, every algebra with a finite

congruence lattice is finite. Hence, we can write Con instead of Conc.

Consider the diagram

A1
f11×f12−−−−−→ B1 ×B2

f21×f22←−−−−− A2.

By Theorem 2.2 the diagram

ConA1
Con(f11×f12)−−−−−−−−−→ Con(B1 ×B2)

Con(f21×f22)←−−−−−−−−− ConA2.

has a lifting

C1
g1−−−−→ D

g2←−−−− C2

in L such that rng g1∩rng g2 6= ∅. By Lemma 1.4 we can identify Con(B1×B2)

with ConB1 × ConB2 and Con(fi1 × fi2) with Con fi1 × Con fi2. Hence, we

have a commutative diagram

ConA1
Con f11×Con f12−−−−−−−−−−−→ ConB1 × ConB2

Con f21×Con f22←−−−−−−−−−−− ConA2

ξ1

x Φ

x ξ2

x
ConC1

Con g1−−−−→ ConD
Con g2←−−−− ConC2

with isomorphisms ξ1, ξ2,Φ and homomorphisms g1 : C1 → D, g2 : C2 → D

in L. By Lemma 1.5, we can assume that D is a subdirect product of D1 and

D2, ConD = ConD1 × ConD2 and

Φ(δ1, δ2) = (Φ1(δ1),Φ2(δ2))

for some isomorphisms Φi : ConDi → ConBi and for every δi ∈ ConDi.

Further, gi : Ci → D ⊆ D1×D2 can be decomposed as gi = gi1×gi2 for some

homomorphisms gij : Ci → Dj .

Now we define isomorphisms χi : ConCi → S and σij : ConDj → T (with

i, j ∈ {1, 2}) by

χi = ψiξi,
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σij = τijΦj .

We claim that Ci, Di, gij , χi, σij form a τ -symmetric lifting of ϕ in L. First,

we have

σ11σ
−1
21 σ22σ

−1
12 = τ11Φ1Φ−1

1 τ−1
21 τ22Φ2Φ−1

2 τ−1
12 = τ11τ

−1
21 τ22τ

−1
12 = τ.

Next, we need to check the commutativity of the diagram

ConCi
Con gij−−−−−→ ConDj

χi

y σij

y
S

ϕ−−−−→ T

Let γ ∈ ConCi. Using the commutativity of the previous diagrams,

(Con fi1(ξi(γ)),Con fi2(ξi(γ))) = Φ(Con gi(γ)) = Φ(Con gi1(γ),Con gi2(γ)),

so

(Con fi1(ξi(γ)),Con fi2(ξi(γ))) = (Φ1(Con gi1(γ)),Φ2(Con gi2(γ))),

and hence

Con fij(ξi(γ)) = Φj(Con gij(γ)).

Then

σij Con gij(γ) = τijΦj Con gij(γ) = τij Con fijξi(γ) = ϕψiξi(γ) = ϕχi(γ).

Finally,

rng(g11 × g12) ∩ rng(g21 × g22) 6= ∅,
because rng g1 ∩ rng g2 6= ∅. �

4. Two examples

In this section we present two examples illustrating the use of Theorem 3.1.

Let N5 be the variety of bounded lattices generated by the 5-element non-

modular lattice N5. (See below.) The smallest and the largest elements 0 and

1 are considered as nullary operations.
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Further, let N6 and M be varieties of bounded lattices with an additional

unary operation ′ generated by the algebras N6 and M depicted below. In the

algebra M , the unary operation on the elements xi is defined by x′i = xi+1 for

1 ≤ i ≤ 5 and x′6 = x1.
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�
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@
@
@

@
@
@b = b′

a = a′

1 = 1′

0 = 0′

x1

x2

x3

x4 x6

x5

M

All three varieties are clearly finitely generated and congruence-distributive.

The congruence lattices of N5, N6 and M are isomorphic to the lattice T

depicted above. The subdirectly irreducible members of N5, N6 and M can

be easily determined by Jónsson’s Lemma. Up to isomorphism,

SI(N5) = {N5, C2},

SI(N6) = {N6, N2},

SI(M) = {M,D2},

where C2, N2 and D2 are subalgebras of N5, N6 and M respectively, each with

the underlying set {0, 1}.

Lemma 4.1. Let ϕ : T → T be the identity homomorphism and let τ be the

unique automorphism on T interchanging α and β. Then ϕ has a τ -symmetric

lifting in N6, but not in N5.

Proof. We set A1 = A2 = B1 = B2 = N6, f11 = f12 = f21 = idN6 and let

f22 be the vertical symmetry on N6, hence f22(0) = 0, f22(a) = b, f22(b) =

a, f22(c) = d, f22(d) = c, f22(1) = 1. It is easy to check that f22 is a

homomorphism. The lattice ConN6 is isomorphic to T , the two coatoms (in

the block description) are γ = (0ac)(bd1) and δ = (0bd)(ac1). We define

ψ1, ψ2, τ11, τ12 and τ21 all equal to the unique isomorphism ρ : ConN6 → T

with ρ(γ) = α, ρ(δ) = β. Finally, let τ22 : ConN6 → T be defined by

τ22(γ) = β, τ22(δ) = α. It is easy to check that we have a τ -symmetric lifting

of ϕ in N6.
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Now we show that ϕ has no τ -symmetric lifting in N5. For contradiction,

let Ai, Bj , fij , ψi, τij form such a lifting. Since N5 is the only algebra in

N5 whose congruence lattice is isomorphic to T , we can assume that Ai =

Bj = N5 for every i, j. There is only one homomorphism f : N5 → N5 such

that Con f is bijective, namely the identity mapping. Hence, fij = idN5
and

Con fij = idConN5 for every i, j. Now the commutativity of the diagram

ConAi
Con fij−−−−−→ ConBj

ψi

y τij

y
S

ϕ−−−−→ T

means that τij = ψi for every i, j, hence

τ11τ
−1
21 τ22τ

−1
12 = ψ1ψ

−1
2 ψ2ψ

−1
1 = idT 6= τ,

a contradiction. �

Consequence 4.2. crit(N6,N5) ≤ ℵ1.

Our second example is slightly more complicated. Let S = {0, κ, λ, 1} be a

4-element Boolean lattice, regarded as a (∨, 0)-semilattice. Let ϕ : S → T be

defined by ϕ(0) = 0, ϕ(κ) = α, ϕ(λ) = β and ϕ(1) = 1. It is a homomorphism

of (∨, 0)-semilattices, although the meet operation is not preserved. Let τ :

T → T be the same automorphism as in our first example (interchanging α

and β).

Lemma 4.3. ϕ has a τ -symmetric lifting in N5, but not in M.

Proof. Let A1 = A2 be a 3-element chain 0 < d < 1. The congruence lattice of

this algebra is isomorphic to S, the two nontrivial congruences are α0 = (0d)(1)

and α1 = (0)(d1). We define isomorphisms ψi : ConAi → S by ψi(α0) = κ,

ψi(α1) = λ (i = 1, 2).

Further, let B1 = B2 = N5. We define homomorphisms fij : Ai → Bj by

f11(d) = f12(d) = f21(d) = a and f22(d) = b. The lattice ConN5 is isomorphic

to T , the two coatoms are γ = (0ac)(b1) and δ = (0b)(ac1). We define τ11, τ12

and τ21 all equal to the unique isomorphism ρ : ConN5 → T with ρ(γ) = α,

ρ(δ) := β. Finally, let τ22 : ConN5 → T be defined by τ22(γ) = β, τ22(δ) = α.

It is easy to check that we have a τ -symmetric lifting of ϕ in N5.

Now we show that ϕ has no τ -symmetric lifting inM. For contradiction, let

Ai, Bj , fij , ψi, τij form such a lifting. Since M is the only algebra inM whose

congruence lattice is isomorphic to T , we can assume that B1 = B2 = M . The

two coatoms of ConM are γ with equivalence classes {1} and M \ {1}, and δ

whose classes are {0} andM\{0}. The monolith (smallest nonzero congruence)

of M collapses the whole middle part of M .

The algebras Ai must have congruence lattices isomorphic to S, which

means that they must be subdirect products of two simple algebras. The

only simple algebra in M is D2, so Ai are (isomorphic to) subalgebras of



10 Miroslav Ploščica Algebra univers.

D2 ×D2. There are two such algebras: the product D2 ×D2 and a 3 element

chain D3 = {0, e, 1} with the identity unary operation ′. It is easy to see that

any homomorphism lifting ϕ must be injective (as ϕ−1(0) = {0}). Since there

are no injective homomorphisms D2 × D2 → M , the case Ai = D2 × D2 is

excluded, and the only possibility is A1 = A2 = D3.

The homomorphisms fij : D3 → M can map the element e into a or b.

In both cases we have Con fij(θ(0, e)) = γ, Con fij(θ(1, e)) = δ. From the

commutativity of the lifting diagram we obtain that

τij(γ) = ϕψi(θ(0, e)), τij(δ) = ϕψi(θ(1, e)),

which implies that τ11 = τ12 and τ21 = τ22. Then obviously

τ11τ
−1
21 τ22τ

−1
12 = idT 6= τ,

a contradiction. �

Consequence 4.4. crit(N5,M) ≤ ℵ1.

It is worth noticing that the variety N5 appears in both our examples, but

plays two opposite roles.

5. Lower bound

This section is devoted to the proof that crit(N6,N5) > ℵ0, crit(N5,M) >

ℵ0, so that the upper bounds in the previous section are tight. The two proofs

are very similar, we shall work out the details only in the first case.

First we need to look closer at the congruence lattices of finite algebras in

N6, N5 and M.

For an algebraic lattice L let M(L) denote the set of all completely ∧-

irreducible elements of L. It is well known that α ∈ M(ConA) if and only if

the quotient algebra A/α is subdirectly irreducible, for any congruence α of

an algebra A.

Lemma 5.1. For every A ∈ N6 ∪ N5 ∪M, the ordered set M(ConA) is a

disjoint union of antichains P0 and P1 such that for every p ∈ P1 there are

exactly two q ∈ P0 with p < q.

Proof. For every α ∈ M(ConA), the algebra A/α is subdirectly irreducible.

The set P0 consists of those α ∈ ConA with A/α isomorphic to N2 or C2

or D2. The set P1 contains those α ∈ ConA with A/α isomorphic to N6 or

N5 or M . Our claim follows from the fact that for every α ∈ P1 the lattice

{β ∈ ConA | β ≥ α} is isomorphic to T . �

Now we state the converse to the previous Lemma for finite algebras in N5.

A similar assertion is true for N6 andM. Let h0 and h1 be the two surjective

homomorphisms N5 → C2, with Kerh0 = (0ac)(b1), Kerh1 = (0b)(ac1).
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Theorem 5.2. Let L be a finite distributive lattice such that M(L) is a disjoint

union of antichains P0 and P1 such that for every p ∈ P1 there are exactly two

q ∈ P0 with p < q. For p ∈ M(L) we define

Tp =

{
C2 if p ∈ P0

N5 if p ∈ P1.

Further, let v be any linear order on P0. For every p ∈ P1 we have q1, q2 ∈ P0

with p < q1, p < q2, q1 @ q2 and we denote fp,q1 = h0, fp,q2 = h1. Let B

be the limit of the diagram (Tp, fp,q; p < q in M(L)), that is the subalgebra of∏
p∈M(L) Tp consisting of all tuples x = (xp)p∈M(L) satisfying xq = fp,q(xp)

whenever p < q.

Then ConB is isomorphic to L and the isomorphism ϕ : L→ ConB assigns

to every p ∈ M(L) the kernel of the natural projection πp : B → Tp.

For the proof of Theorem 5.2 see [12], Theorems 3.1 and 2.4. (Actually,

slightly more is proved in [12]: the homomorphisms fp,q1 ∈ {h0, h1} and fp,q2 ∈
{h0, h1} can be chosen arbitrarily (but they must be different), without taking

into account any order on P0.)

In the sequel we use the (1,∧)-homomorphisms ϕ← defined in the introduc-

tion.

Lemma 5.3. Let f : A0 → A1 be a homomorphism of finite algebras in N6.

Let α ∈ ConA1 with A1/α ∼= N2. Then A0/Con f←(α) ∼= N2.

Proof. The algebra A0/Con f←(α) is isomorphic to a subalgebra of A1/α via

the natural embedding x/Con f←(α) 7→ f(x)/α. Since N2 has no proper

subalgebras (recall that 0 and 1 are nullary operations), A0/Con f←(α) is

isomorphic to N2. �

Lemma 5.4. Let f : A0 → A1 be a homomorphism of finite algebras in N6.

Let α ∈ ConA1 with A1/α ∼= N6. Let β1, β2 be the two congruences of A1

above α with A1/β1
∼= A1/β2

∼= N2. Then one of the following cases occurs:

(i) A0/Con f←(α) ∼= N6 and Con f←(β1) 6= Con f←(β2);

(ii) Con f←(α) = Con f←(β1) ∧ Con f←(β2).

Proof. Similarly as in 5.3, the algebra A0/Con f←(α) is isomorphic to a sub-

algebra of A1/α. The subalgebras of N6 are N6, N2, {0, 1, a, d} and {0, 1, b, c}.
(The last two are isomorphic to the 4-element Boolean algebra N2 × N2.) If

A0/Con f←(α) is isomorphic to N2, then Con f←(α) is a coatom of ConA0.

By Lemma 5.3, Con f←(β1) = Con f←(β2) = Con f←(α) and (ii) holds.

Suppose now that A0/Con f←(α) is isomorphic to N2 × N2. We claim

that the case (ii) occurs. Since the Con(N2 × N2) is a 4-element Boolean

lattice, we have Con f←(α) = γ1 ∧ γ2 for some coatoms γ1, γ2 ∈ ConA0.

Since Con f← is order-preserving and γ1, γ2 are the only coatoms of ConA0

above Con f←(α), we have Con f←(βi) ∈ {γ1, γ2} for i = 0, 1. It remains to

prove that Con f←(β1) 6= Con f←(β2). Let h denote the natural projection
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A1 → A1/α. Let h1, h2 be the two surjective homomorphisms A1/α → N2.

Then Con f←(α) = Kerhf , Con f←(βi) = Kerhihf . It is easy to see that

Kerh1hf = Kerh2hf implies rng hf = {0, 1}, but then A0/Kerhf is a 2-

element algebra, a contradiction. So, Kerh1hf 6= Kerh2hf .

Finally, if A0/Con f←(α) is isomorphic to N6, then we use the same argu-

ment as above to prove that Con f←(β1) 6= Con f←(β2), so (i) holds. �

A similar statement is true for homomorphisms in N5 and M. The main

difference is that both N5 and M contain a 4-element chain as a subalgebra,

and this subalgebra is a subdirect product of three subdirectly irreducible

algebras. That leads to an additional case in 5.4. We skip the details here.

Theorem 5.5. crit(N6,N5) = ℵ1.

Proof. The inequality crit(N6,N5) ≤ ℵ1 has been established as Consequence

4.2. To prove crit(N6,N5) > ℵ0 we use Theorem 2.1. Consider the diagram

A0
f0−−−−→ A1

f1−−−−→ A2 . . .
fn−1−−−−→ An

of finite algebras in N6. We need to show that the corresponding semilattice

diagram

ConcA0
Conc f0−−−−−→ ConcA1

Conc f1−−−−−→ ConcA2 . . .
Conc fn−1−−−−−−−→ ConcAn

has a lifting in N5. So, we shall construct a diagram

B0
g0−−−−→ B1

g1−−−−→ B2 . . .
gn−1−−−−→ Bn

in N5 together with isomorphisms ϕi : ConcBi → ConcAi such that the

diagram

ConcBi
Conc gi−−−−−→ ConcBi+1

ϕi

y ϕi+1

y
ConcAi

Conc fi−−−−−→ ConcAi+1

commutes for every i = 0, . . . , n− 1.

Let us denote Li = ConcAi, ki = Conc fi. By Lemma 5.1, the ordered set

M(Li) is a union of antichains P i0 and P i1 such that for every p ∈ P i1 there are

exactly two q ∈ P i0 with p < q. By Lemma 5.3 we have k←i (q) ∈ P i0 whenever

q ∈ P i+1
0 .

Before we can define algebras Bi and homomorphisms gi, we need to con-

struct linear orders vi on P i0 such that k←i (q1) vi k←i (q2) whenever q1 vi+1 q2.

We proceed by induction. Let v0 be any linear order on P 0
0 . Now let i ≥ 0

and suppose we have defined vi. Consider the following binary relation ρi on

P i+1
0 :

(x, y) ∈ ρi if x = y or k←i (x) @i k
←
i (y).

It is easy to see that ρi is a partial order. Let vi+1 be any extension of ρi into

a linear order. It is clear that vi+1 satisfies the requirements.
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Let Bi be the algebras constructed in Theorem 5.2 together with the iso-

morphisms ϕi : ConBi → Li.

Now we define homomorphisms gi : Bi → Bi+1. We consider the elements

of Bi in the form x = (xp)p∈M(Li).

According to Lemmas 5.3 and 5.4 the set M(Li+1) is a disjoint union of the

following two sets:

K1 = {p ∈ M(Li+1) | p ∈ P i+1
0 , k←i (p) ∈ P i0 or p ∈ P i+1

1 , k←i (p) ∈ P i1},

K2 = {p ∈ P i+1
1 | k←i (p) = k←i (p1) ∧ k←i (p2) for p1, p2 ∈ P i+1

0 , p < p1, p2}.
We set

gi(x) = y = (yp)p∈M(Li+1)

where the elements yp ∈ Tp are defined as follows. If p ∈ K1 then

yp = xk←i (p).

If p ∈ K2 then we denote q1 = k←i (p1), q2 = k←i (p2). We can assume p1 @i+1

p2, which implies q1 vi q2 and define

yp =


0 if xq1 = xq2 = 0,

a if xq1 = 0, xq2 = 1,

b if xq1 = 1, xq2 = 0,

1 if xq1 = xq2 = 1.

For the correctness of our definition we need to prove that y ∈ Bi+1. Clearly

yp ∈ Tp. Now let p ∈ P i+1
1 , p1, p2 ∈ P i+1

0 with p < p1, p2, p1 @i+1 p2. Denote

k←i (p) = q, k←i (p1) = q1, k←i (p2) = q2.

Let p ∈ K1. Since x ∈ Bi, we obtain that fp,p1(yp) = h0(xq) = fq,q1(xq) =

xq1 = yp1 , and similarly, fp,p2(yp) = yp2 .

The second possibility is p ∈ K2. We have the following subcases.

(a) If xq1 = xq2 = 0, then yp = yp1 = yp2 = 0.

(b) If xq1 = 0, xq2 = 1, then yp = a, yp1 = 0, yp2 = 1.

(c) If xq1 = 1, xq2 = 0, then yp = b, yp1 = 1, yp2 = 0.

(d) If xq1 = xq2 = 1, then yp = yp1 = yp2 = 1.

In each case, yp1 = h0(yp) = fp,p1(yp), yp2 = h1(yp) = fp,p2(yp).

So, gi is well defined. To show that gi is a homomorphism it suffices to

show that the composition πpgi (where πp is the natural projection Bi+1 →
Tp) is a homomorphism for every p ∈ M(Li+1). However, if p ∈ K1 then

πpgi is equal to the projection πq (q = k←(p)). If p ∈ K2 then πpgi is the

composition of πq1 × πq2 and an embedding C2 × C2 → N5. In all cases, πpgi
is a homomorphism.

It remains to show that ϕi+1 Con gi = kiϕi. Equivalently (by Lemma 1.3),

we show that

(Con gi)
←ϕ←i+1 = ϕ←i k

←
i .

Since all maps in this equality are ∧-preserving, it suffices to prove the equality

for all p ∈ M(ConAi+1) = M(Li+1). Since ϕi+1 is an isomorphism, we have
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ϕ←i+1 = ϕ−1
i+1, so that according to Lemma 5.2, ϕ←i+1(p) = kerπp, where πp is

the natural projection Bi+1 → Tp. Further, let u, v ∈ Bi. Then

(u, v) ∈ (Con gi)
←(kerπp) iff (gi(u), gi(v)) ∈ kerπp iff gi(u)p = gi(v)p.

Now we distinguish the same two cases as before. Let q = k←i (p).

First, let p ∈ K1. Then

gi(u)p = gi(v)p iff uq = vq iff (u, v) ∈ kerπq = ϕ←i (q).

So, (Con gi)
←ϕ←i+1(p) = ϕ←i k

←
i (p)

Second, let p ∈ K2, k←i (p1) = q1, k←i (p2) = q2. By Lemma 5.4, q = q1 ∧ q2.

It is easy to see from the definition of gi that gi(u)p is determined uniquely by

uq1 and uq2 . Hence,

gi(u)p = gi(v)p iff uq1 = vq1 and uq2 = vq2 .

This is equivalent with

(u, v) ∈ kerπq1 ∩ kerπq2 = ϕ←i (q1) ∧ ϕ←i (q2) = ϕ←i (q),

and we have the same conclusion as in the first case. This completes the

proof. �

6. Possible variations and generalizations

Our paper is only a first step in a systematic investigation of the critical

point ℵ1. Our ideas can probably be modified and generalized in several ways.

Instead of considering automorphisms τ : T → T one can consider auto-

morphisms ψ : S → S. To define an alternative concept of symmetry of liftings

we consider isomorphisms ψij , τi, commutativity of diagrams

ConAi
Con fij−−−−−→ ConBj

ψij

y τj

y
S

ϕ−−−−→ T

and the equality

ψ = ψ22ψ
−1
21 ψ11ψ

−1
12 .

Formally, the two concepts of symmetry seem nonequivalent. However, we

do not have an example distinguishing them. The inequalities crit(N6,N5) ≤
ℵ1 and crit(N5,M) ≤ ℵ1 could also be proved using this alternative concept.

As another possible generalization, one can consider a whole subgroup G ⊆
AutT instead of a single automorphism τ . It seems possible that there is a

τ -symmetric lifting of ϕ for every τ ∈ G, but not simultaneously for all such τ .

Again, we do not go into details here, as we do not have a suitable illustrating

example.

Next, the concept of τ -symmetric lifting should be generalized in a way that

considers liftings of any finite diagrams indexed by a chain, not just liftings of

a single homomorphisms ϕ. The precise definition is not clear, and again, no
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suitable example is known. This is connected with the fact that in all known

cases with crit(K,L) = ℵ1 there exists a diagram indexed by a square, which

is liftable in K and not in L. (Notice that Theorem 2.1 for ℵ1 only assumes

the existence of a diagram indexed by a product of two finite chains.)

Finally, let us remark that the first published example of crit(K,L) = ℵ1 in

[4] is based on a rather different principle, which deserves a further investiga-

tion, too.
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[9] M. Ploščica, Separation properties in congruence lattices of lattices, Colloquium

Mathematicae 83 (2000), 71–84.
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