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Abstract. This is a contribution to the well known problem whether every
algebraic distributive lattice can be represented as the congruence lattice of

some lattice. We present two constructions of distributive semilattices with-
out a special refinement property, called WURP. Failure of WURP means

that these semilattices are difficult to represent as semilattices of compact

congruences of lattices. In fact, we do not know if these semilattices have
such representation. Our construction is motivated by a recent paper of F.

Wehrung, who found a similar example using ordered vector spaces.

1. Introduction

A distributive semilattice is a (join)-semilattice S with 0 satisfying the following
condition. Whenever x, y, z ∈ S and x + y ≥ z, then there are elements x′ ≤ x,
y′ ≤ y such that x′ + y′ = z. Distributivity of semilattices can be also defined in a
more symmetric way. Whenever x0, x1, y0, y1 ∈ S are such that x0 + x1 = y0 + y1,
then there are elements zij ∈ S, i, j = 0, 1, such that zi0 + zi1 = xi, z0j + z1j = yj ,
i, j = 0, 1.

Distributive semilattices are exactly semilattices of compact elements of distribu-
tive algebraic lattices. So the classical Congruence Lattice Problem whether every
algebraic distributive lattice can be represented as the congruence lattice of a lat-
tice can be reformulated as the problem whether every distributive semilattice is
isomorphic to the semilattice of compact congruences of a lattice.

In [3] F. Wehrung formulated a so called Uniform Refinement Property (URP)
for distributive semilattices and constructed a distributive semilattice that fails this
property. In a subsequent paper [4] he proved that compact congruence semilattices
of a large class of lattices satisfy (URP). This class of “congruence splitting” lattices
contains all sectionally complemented lattices, relatively complemented lattices,
atomistic lattices, and is closed under direct limits.

On the other hand, the authors of the present paper together with F. Wehrung
proved in [2] that compact congruence semilattice of the free lattice with at least
ℵ2 free generators in any non-distributive variety of lattices does not satisfy even
weaker condition, which is called the Weak Uniform Refinement Property (WURP).
We say that a distributive semilattice S satisfies (WURP) at an element e ∈ S if,
for every system aα

i , α ∈ Ω, i = 0, 1 of elements of S such that aα
0 +aα

1 = e for every
α ∈ Ω, there are elements cαβ ∈ S, α, β ∈ Ω satisfying the following conditions:

(1) cαβ ≤ aα
0 , a

β
1 ,

(2) cαβ + aα
1 + aβ

0 = e,
(3) cαγ ≤ cαβ + cβγ .
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Hence the failure of (WURP) at some point of a distributive semilattice S is not
an obstacle for representing this semilattice as the compact congruence semilattice
of a lattice.

In the present paper we present two constructions of distributive semilattices
that fail (WURP). Both constructions consist in a “free distributive extension” of
any semilattice with 0. The constructions differ according to the definition of dis-
tributivity we use. The proof that our “free distributive extensions” fail (WURP)
depend on the following Kuratowski’s characterization of ℵk that appeared in [1].
The discovery that Kuratowski’s theorem can be used to prove that certain dis-
tributive semilattices fail (URP) or (WURP) is due to F. Wehrung [3].

In what follows [S]n denotes the set of all n-element subsets of a set S and [S]<ω

denotes the set of all finite subsets of S.

[. Kuratowski’s Theorem] Let n be a non negative integer, let S be a set of car-
dinality at least ℵn and let f : [S]n → [S]<ω be any mapping. Then there exists
U ∈ [S]n+1 such that x 6∈ f(U \ {x}) for every x ∈ U .

2. Free distributive extensions of semilattices

Let (L,+) be a (join-) semilattice with 0. Let us denote

C(L) = {(x, y, z) ∈ L3 | x+ y ≥ z}.
A finite set R ⊆ C(L) is called reduced if the following conditions hold:

(1) R contains exactly one triple of the form (x, x, x); this element x will be
denoted by tR;

(2) if (x, y, z) ∈ R and (y, x, z) ∈ R then x = y = z;
(3) if (x, y, z) ∈ R \ {tR, tR, tR} then x � tR, y � tR, z � tR.

Let R(L) be the family of all reduced sets. We define an order relation on R(L) by

R ≤ S iff, for every (x, y, z) ∈ R \ S, x ≤ tS or z ≤ tS .

Lemma 2.1. (R(L),≤) is a semilattice. The supremum R + S can be computed
by the following algorithm.

(i) Set T0 = R∪S. If T0 contains two different elements (x, y, z) and (y, x, z),
we replace this pair of elements by a single element (z, z, z). After all such
replacements we obtain a set T1.

(ii) Let (x1, x1, x1), . . . , (xn, xn, xn) be all elements of the form (x, x, x) in T1.
We replace all these elements by the single element (Σxi,Σxi,Σxi) and
denote the resulting set by T2.

(iii) If there is (x, y, z) ∈ T2 such that y ≤ tT2 , we replace the elements (x, y, z),
(tT2 , tT2 , tT2) by the element (z + tT2 , z + tT2 , z + tT2). (Of course, this
changes the value of tT2 .) We repeat this procedure until no such situation
occurs. Let T3 be the resulting set.

(iv) R+ S is obtained from T3 by deleting all elements (x, y, z) with x ≤ tT3 or
z ≤ tT3 .

Proof. I. First we show that R + S ∈ R(L). The condition (1) is ensured by the
step (ii) and remains valid after performing steps (iii) and (iv). The condition (2) is
satisfied because of the step (i). The condition b � tR+S for every (a, b, c) ∈ R+ S
holds because of the step (iii) and the conditions a � tR+S , c � tR+S are ensured
by the step (iv) of our algorithm.
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II. Now we show that R ≤ R + S. (The proof that S ≤ R + S is similar.)
Because of (ii) we have tR + tS ≤ tR+S . Suppose that (a, b, c) ∈ R \ (R+ S). Since
(a, b, c) ∈ R ∪ S, the triple (a, b, c) must have been deleted in some step of the
algorithm. If this happened in the step (i) then (c, c, c) was one of the summands
in the step (ii) and therefore c ≤ tR+S . If this happened in the step (ii) then
(a, b, c) is of the form (x, x, x) and x ≤ tR+S . If this happened in the step (iii) then
c+ tT2 ≤ tR+S , hence c ≤ tR+S . If this happened in the step (iv), the case is trivial.

III. Let Q ∈ R(L), R ≤ Q, S ≤ Q. We show that R + S ≤ Q. Let (x, y, z) ∈
(R + S) \ Q. If (x, y, z) ∈ R ∪ S then x ≤ tQ or z ≤ tQ, because R ≤ Q, S ≤ Q.
The remaining case is that (x, y, z) appeared in some step of the algorithm. The
only such triple is (tR+S , tR+S , tR+S) and we need to show that tR+S ≤ tQ. At the
beginning we have tR ≤ tQ and tS ≤ tQ. In the step (i), new triples (c, c, c) can
appear such that (a, b, c) ∈ R, (b, a, c) ∈ S. The set Q cannot contain both (a, b, c)
and (b, a, c). If (a, b, c) /∈ Q (the other case is similar) we have a ≤ tQ or c ≤ tQ. If
a ≤ tQ then (b, a, c) /∈ Q, because Q is reduced. Consequently, b ≤ tQ or c ≤ tQ. If
b ≤ tQ then also c ≤ a+ b ≤ tQ. Hence, in any case, c ≤ tQ. This means that after
the step (ii) we have tT2 ≤ tQ. Consider now the step (iii). Let (a, b, c) ∈ R ∪ S,
b ≤ tT2 . Then b ≤ tQ, hence (a, b, c) /∈ Q and therefore a ≤ tQ or c ≤ tQ. The case
c ≤ tQ gives us the desired inequality c+ tT2 ≤ tQ. If a ≤ tQ then c ≤ a+ b ≤ tQ
with the same conclusion. Hence, after the step (iii) we have tR+S = tT3 ≤ tQ and
the step (iv) is inessential. �

Lemma 2.2. The assignment x 7→ {(x, x, x)} defines a 0-preserving semilattice
embedding L→ R(L).

Proof. Obvious. �

By an interpolant on a semilattice L we mean any function ι : C(L) → L
that satisfies the conditions ι(x, y, z) + ι(y, x, z) = z and ι(x, y, z) ≤ x for every
(x, y, z) ∈ C(L). It is obvious that an interpolant exists on a semilattice L if and
only if L is distributive. Also notice that an interpolant on a distributive semilattice
L is not determined uniquely.

Theorem 2.3. Let f : L→M be a semilattice homomorphism. Suppose that ι is
an interpolant on M . Let us define a map fι : R(L) →M by

fι(R) =
∑

(x,y,z)∈R

ι(f(x), f(y), f(z)).

Then fι is a semilattice homomorphism and fι � L = f .

Proof. For (x, y, z) ∈ C(L) we have (f(x), f(y), f(z)) ∈ C(M), so fι is well defined.
Since x = ι(x, x, x) + ι(x, x, x) = ι(x, x, x), we have fι � L = f . Now we claim that

fι(R+ S) =
∑

(x,y,z)∈R∪S

ι(f(x), f(y), f(z)) = fι(R) + fι(S).

Let (x, y, z) ∈ R∪S. Since R,S ≤ R+S, we have (x, y, z) ∈ R+S or x ≤ tR+S or
z ≤ tR+S . If (x, y, z) ∈ R+S then ι(f(x), f(y), f(z)) ≤ fι(R+S). If z ≤ tR+S then
ι(f(x), f(y), f(z)) ≤ f(z) ≤ f(tR+S) = ι(f(tR+S), f(tR+S), f(tR+S)) ≤ fι(R + S).
A similar argument holds in the case x ≤ tR+S . This shows that fι(R) + fι(S) ≤
fι(R+ S).
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To prove the inverse inequality, it suffices to show that

f(tR+S) = ι(f(tR+S), f(tR+S), f(tR+S)) ≤ fι(R) + fι(S).

Clearly, f(tR) ≤ fι(R), f(tS) ≤ fι(S). Let us consider R + S computed by
the algorithm from 2.1. Suppose that (a, b, c) ∈ R, (b, a, c) ∈ S. Then f(c) =
ι(f(a), f(b), f(c))+ ι(f(b), f(a), f(c)) ≤ fι(R)+fι(S). Since f is a homomorphism,
after step (ii) we have f(tT2) ≤ fι(R) + fι(S). Now let (a, b, c) ∈ R ∪ S, b ≤ tT2 .
Then f(c) = ι(f(a), f(b), f(c)) + ι(f(b), f(a), f(c)) ≤ ι(f(a), f(b), f(c)) + f(b) ≤
fι(R) + fι(S), hence f(c + tT2) = f(c) + f(tT2) ≤ fι(R) + fι(S). This shows that
f(tR+S) ≤ fι(R) + fι(S) holds at the end of the algorithm. �

Let us set R0(L) = L and Rn+1(L) = R(Rn(L)) for n = 0, 1, 2, .... Up to
isomorphism we can assume that Rn(L) is a subsemilattice of Rn+1(L). Let us
set D(L) =

⋃∞
n=0Rn(L). Then every semilattice homomorphism f : L → M

(with M distributive having an interpolant ι) can be extended to a homomorphism
f[ι] : D(L) →M , similarly as in 2.3.

Theorem 2.4. For every semilattice L, D(L) is distributive.

Proof. Let x, y, z ∈ D(L), x+ y ≥ z. Let n be the least number such that x, y, z ∈
Rn(L). We set ι(x, y, z) = {(x, y, z), (0, 0, 0)} ∈ Rn+1(L). (If x = y = z or
0 ∈ {x, y, z} then ι(x, y, z) = z.) This defines an interpolant on D(L). �

Let L be a 0-subsemilattice of M . Then, obviously, C(L) is a subset of C(M)
and R(L) is a 0-subsemilattice of R(M). Moreover, the diagram

L −−−−→ My y
R(L) −−−−→ R(M)

commutes, which means that natural embeddings L→ R(L) and M → R(M) can
be simultaneously regarded as inclusions. As a consequence we obtain

Lemma 2.5. If L is a 0-subsemilattice of M then D(L) is a 0-subsemilattice of
D(M).

Further, let M be a directed union of its 0-subsemilattices Li (i ∈ I). Then
C(M) is a directed union of its subsets C(Li) and therefore R(M) is a directed
union of its 0-subsemilattices R(Li). Consequently we have

Lemma 2.6. If M is a directed union of its 0-subsemilattices Li (i ∈ I) then D(M)
is a directed union of its 0-subsemilattices D(Li).

3. Failure of WURP

Let Ω be a set and for every α ∈ Ω let aα
0 , a

α
1 be two different elements. Suppose

moreover that the sets {aα
0 , a

α
1 }, {a

β
0 , a

β
1} are disjoint for any two α, β ∈ Ω. Let

L(Ω) be the family of all A ⊆ U = {aα
0 | α ∈ Ω} ∪ {aα

1 | α ∈ Ω} that satisfy

(1) if {aα
0 , a

α
1 } ⊆ A for some α then A = U ;

(2) if A 6= U then A is finite.
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It is clear that L(Ω) is a semilattice in which the join of two elements is either
set-theoretical union or 1 = U . (In fact, L(Ω) is the free semilattice with generators
satisfying aα

0 + aα
1 = 1 for all α.)

Now let us consider the 0-subsemilattice L(2) of L(Ω) generated by the set
{a0

0, a
0
1, a

1
0, a

1
1} (0, 1 ∈ Ω). Let G be the 0-subsemilattice of R(L(2)) generated by

the elements

(1) c00 = {(0, 0, 0), (a0
0, a

0
1, a

1
0), (a

1
0, a

1
1, a

0
0)};

(2) c01 = {(0, 0, 0), (a0
0, a

0
1, a

1
1), (a

1
1, a

1
0, a

0
0)};

(3) c10 = {(0, 0, 0), (a0
1, a

0
0, a

1
0), (a

1
0, a

1
1, a

0
1)};

(4) c11 = {(0, 0, 0), (a0
1, a

0
0, a

1
1), (a

1
1, a

1
0, a

0
1)}.

Let 2 be the 2-element semilattice {0, 1}. It is well known that, for a natural num-
ber n, 2n is the free 0-semilattice with n generators (1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . .
(0, 0, 0, . . . , 1).

Lemma 3.1. G is isomorphic to 24.

Proof. Since 24 is free, we have a homomorphism ϕ : 24 → G with ϕ(1, 0, 0, 0) =
c00, ϕ(0, 1, 0, 0) = c01, ϕ(0, 0, 1, 0) = c10, ϕ(0, 0, 0, 1) = c11. Further we define the
interpolant ι on 24 by ι(x, y, z) = x∧z. (24 is a lattice.) Let us consider the embed-
ding ψ : L(2) → 24 determined by ψ(a0

0) = (1, 1, 0, 0), ψ(a0
1) = (0, 0, 1, 1), ψ(a1

0) =
(1, 0, 1, 0), ψ(a1

1) = (0, 1, 0, 1). By 2.3, ψ can be extended to ψι : R(L(2)) → 24.
We have ψι(c00) = ι(ψ(a0

0), ψ(a0
1), ψ(a1

0)) + ι(ψ(a1
0), ψ(a1

1), ψ(a0
0)) = (1, 0, 0, 0) +

(1, 0, 0, 0) = (1, 0, 0, 0) and similarly, ψι(c01) = (0, 1, 0, 0), ψι(c10) = (0, 0, 1, 0),
ψι(c11) = (0, 0, 0, 1). This shows that ψι is inverse to ϕ, hence it is an isomor-
phism. �

Theorem 3.2. If card(Ω) ≥ ℵ2 then D(L(Ω)) does not have WURP at 1.

Proof. For every α ∈ Ω we have aα
0 + aα

1 = 1. For contradiction, suppose that
elements cαβ have required properties.

For any set X ⊆ Ω let L(X) be the 0-subsemilattice of L(Ω) generated by
{aα

0 | α ∈ X}∪{aα
1 | α ∈ X}. By 2.5 we have the canonical embedding D(L(X)) →

D(L(Ω)), which we regard as inclusion. Obviously, L(Ω) is a directed union of its 0-
subsemilattices L(X), where X runs through finite subsets of Ω. By 2.6, D(L(Ω))
is a directed union of its 0-subsemilattices D(L(X)), X finite. Hence, for every
α, β ∈ Ω there is a finite set X{α,β} (Xαβ for short) such that cαβ and cβα belong
to D(L(Xαβ)). By Kuratowski’s theorem there is a 3-element set 3 = {0, 1, 2} ⊆ Ω
such that 0 /∈ X12, 1 /∈ X02, 2 /∈ X01.

Let us consider the map f : L(Ω) → L(3) ⊆ D(L(3)) defined by

f(A) =

{
1 if aα

1 ∈ A for some α /∈ {0, 1, 2}
A ∩ {a0

0, a
1
0, a

2
0, a

0
1, a

1
1, a

2
1} otherwise.

Now we define a special interpolant on D(L(3)). Let G01 be the 0-subsemilattice
of D(L(3)) described in 3.1. Let G02 and G12 be analogous subsemilattices using
the elements a2

0, a
2
1. Since all Gij are lattices, we can use the meet operation. Thus,

for x, y, z ∈ Gij , z ≤ x + y, we set ι(x, y, z) = x ∧ z. (The intersection is taken in
Gij . There is no ambiguity, since the intersection of two different Gij is a sublattice
of both. For instance, G01 ∩ G02 = {0, 1, a0

0, a
0
1}.) If {x, y, z} * G01, G02, G12, we

define ι(x, y, z) as in the proof of 2.4.
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It is easy to see that f is a homomorphism. By 2.3 it can be extended to a
homomorphism f[ι] : D(L(Ω)) → D(L(3)). We denote d0 = f[ι](c12), d1 = f[ι](c02),
d2 = f[ι](c01).

The definition of f[ι] implies that di ∈ D(L(3 \ {i})) for i = 0, 1, 2. Indeed, by
induction we can prove that Rn(L(Ω\{i})) is mapped by f[ι] into D(L(3\{i})) for
every n. In fact, the definition of ι ensures that d0 ∈ G12, d1 ∈ G02 and d2 ∈ G01.

Since f[ι] is a homomorphism, we have d0 ≤ a1
0, a

2
1, d1 ≤ a0

0, a
2
1, d2 ≤ a0

0, a
1
1.

Further, we have the equalities d0 +a1
1 +a2

0 = d1 +a0
1 +a2

0 = d2 +a0
1 +a1

0 = 1. In the
Boolean algebra G12 there exists only one element d0 satisfying these requirements,
namely
d0 = {(0, 0, 0), (a1

0, a
1
1, a

2
1), (a

2
1, a

2
0, a

1
0)}.

For similar reasons,
d1 = {(0, 0, 0), (a0

0, a
0
1, a

2
1), (a

2
1, a

2
0, a

0
0)},

d2 = {(0, 0, 0), (a0
0, a

0
1, a

1
1), (a

1
1, a

1
0, a

0
0)}.

From the inequality c02 ≤ c01 + c12 we obtain that d1 ≤ d0 + d2. But we can
check directly that this is not true - a contradiction. �

4. Free distributive extensions of semilattices - another version

In this section we present an alternative construction of a “free distributive
extension” of a given semilattice L.

Let (L,+) be a (join-) semilattice with 0. Let us denote

D0(L) = {(a0, a1, b0, b1) ∈ L4 | a0 + a1 = b0 + b1}.
Further we denote

D(L) = (D0(L)× {0, 1} × {0, 1}) ∪ L.
Instead of ((a0, a1, b0, b1), i, j) we shall write (a0, a1, b0, b1)ij . Moreover, if i, j ∈
{0, 1}, then we denote by i′ the other element of {0, 1} different from i and similarly
j′ is the other element of {0, 1} different from j. A finite set R ⊆ D(L) is called
reduced if the following conditions hold:

(1) R contains exactly one element of L; this element x will be denoted by tR;
(2) if i ∈ {0, 1}, then (a0, a1, b0, b1)i0, (a0, a1, b0, b1)i1 do not belong to R simul-

taneously;
(3) if j ∈ {0, 1}, then (a0, a1, b0, b1)0j , (a0, a1, b0, b1)1j do not belong to R si-

multaneously;
(4) if (a0, a1, b0, b1)ij ∈ R, then a0 6≤ tR, a1 6≤ tR, b0 6≤ tR, b1 6≤ tR.

Let Q(L) be the family of all reduced sets. We define an order relation on Q(L) by
R ≤ S if and only if tR ≤ tS and, moreover,

for every (a0, a1, b0, b1)ij ∈ R \ S, either ai ≤ tS or bj ≤ tS .

Lemma 4.1. (Q(L),≤) is a semilattice. The supremum R + S can be computed
by the following algorithm.

(i) Set T0 = R ∪ S. If (a0, a1, b0, b1)i0 ∈ T0 and (a0, a1, b0, b1)i1 ∈ T0 for some
i ∈ {0, 1}, then include also ai to the set T0. If (a0, a1, b0, b1)0j ∈ T0 and
(a0, a1, b0, b1)1j ∈ T0 for some j ∈ {0, 1}, then include bj to T0. After all
such inclusions we obtain a set T1.

(ii) Let x1, . . . , xn be all elements of L ∩ T1. We replace all these elements by
the single element

∑
xi and denote the resulting set by T2.
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(iii) If there is (a0, a1, b0, b1)ij ∈ T2 and ai′ ≤ tT2 , then replace the elements
(a0, a1, b0, b1)ij, tT2 by the element bj + tT2 . If there is (a0, a1, b0, b1)ij ∈
T2 and bj′ ≤ tT2 , then replace (a0, a1, b0, b1)ij and tT2 by ai + tT2 . (Of
course, this changes the value of tT2 .) We repeat this procedure until no
such situation occurs. Let T3 be the resulting set.

(iv) R+S is obtained from T3 by deleting all elements (a0, a1, b0, b1)ij such that
either ai ≤ tT3 or bj ≤ tT3 .

Proof. I. First we show that R + S ∈ Q(L). The condition (1) is ensured on the
step (ii) and remains valid after performing steps (iii) and (iv). The conditions
(2) and (3) are satisfied because of the step (i). The condition ai′ , bj′ � tR+S for
every (a0, a1, b0, b1)ij ∈ R + S holds because of the step (iii) and the conditions
ai, bj � tR+S hold because of the step (iv) of our algorithm.

II. Now we show that R ≤ R+S. (The proof that S ≤ R+S is similar.) Because
of (ii) we have tR ≤ tR+S . Suppose that (a0, a1, b0, b1)ij ∈ R \ (R + S). Since
(a0, a1, b0, b1)ij ∈ R ∪ S, the six-tuple (a0, a1, b0, b1)ij must have been deleted in
some step of the algorithm. If this happened in step (iii), then either ai+tT2 ≤ tR+S

or bj + tT2 ≤ tR+S . If this happened in step (iv), the case is trivial.
III. Let Q ∈ Q(L), R ≤ Q, S ≤ Q. We are going to show that R + S ≤ Q.

Let (a0, a1, b0, b1)ij ∈ (R + S) \ Q. Since only elements of L can appear in R + S
without being already in R ∪ S, we get that (a0, a1, b0, b1)ij ∈ R ∪ S. Thus either
(a0, a1, b0, b1)ij ∈ R \Q or (a0, a1, b0, b1)ij ∈ S \Q. In both cases, either ai ≤ tQ or
bj ≤ tQ.

It remains to prove tR+S ≤ tQ. We have that tR + tS ≤ tQ. First of all
we prove that for every element x ∈ T1 ∩ L we get x ≤ tQ. So suppose that
(a0, a1, b0, b1)i0, (a0, a1, b0, b1)i1 ∈ R ∪ S. We get that the elements (a0, a1, b0, b1)i0

and (a0, a1, b0, b1)i1 cannot be simultaneously in Q since Q is reduced. If none of the
elements (a0, a1, b0, b1)i0, (a0, a1, b0, b1)i1 is contained in Q, then (since R,S ≤ Q)
we get that either ai ≤ tQ or b0, b1 ≤ tQ. But in the latter case also ai ≤ b0+b1 ≤ tQ.
In the remaining case, one of the elements, say (a0, a1, b0, b1)i0 belongs to Q and
(a0, a1, b0, b1)i1 6∈ Q. Again, the assumption (a0, a1, b0, b1)i1 6∈ Q implies that
either ai ≤ tQ or b1 ≤ tQ,which (together with (a0, a1, b0, b1)i0 ∈ Q) contradicts
the condition (4) of the definition of reduced sets for Q. Thus in each case ai ≤ tQ.
The case (a0, a1, b0, b1)0j , (a0, a1, b0, b1)1j ∈ R ∪ S is treated similarly. Hence for
every x ∈ T1 ∩ L we get x ≤ tQ. But then also their sum is less than or equal to
tQ, hence tT2 ≤ tQ.

The element tT2 can be further increased at step (iii). If this is the case suppose
that (a0, a1, b0, b1)ij ∈ T2 and ai′ ≤ tT2 ≤ tQ. Thus (a0, a1, b0, b1)ij 6∈ Q because of
condition (4). Then either ai ≤ tQ or bj ≤ tQ. In the former case bj ≤ a0 + a1 =
ai + ai′ ≤ tQ. Thus in all cases bj + tT2 ≤ tQ. The other case of step (iii) is treated
similarly.

Since tR+S = tT3 , we have proved that tR+S ≤ tQ. �

Lemma 4.2. The semilattice L is a 0-subsemilattice of Q(L). (We identify x ∈ L
with {x} ∈ Q(L).)

Proof. Obvious. �

By a refinement operator on a semilattice L we mean a collection of four func-
tions ιij : D0(L) → L, i, j = 0, 1, satisfying the conditions ιi0(a0, a1, b0, b1) +
ιi1(a0, a1, b0, b1)) = ai and ι0j(a0, a1, b0, b1) + ι1j(a0, a1, b0, b1) = bj for every
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i, j = 0, 1. It is obvious that a refinement operator exists on a semilattice L if
and only if L is distributive. Also notice that a refinement operator on a distribu-
tive semilattice L is not determined uniquely.

Theorem 4.3. Let f : L→M be a semilattice homomorphism. Suppose that ιij,
i, j = 0, 1, is a refinement operator on M . Let us define a map fι : Q(L) →M by

fι(R) = f(tR) +
∑

(a0,a1,b0,b1)ij∈R

ιij(f(a0), f(a1), f(b0), f(b1)).

Then fι is a semilattice homomorphism and fι � L = f .

Proof. For every (a0, a1, b0, b1) ∈ D0(L) we have that (f(a0), f(a1), f(b0), f(b1)) ∈
D0(M), so fι is well defined. Moreover, fι � L = f .

To show that fι(R)+fι(S) ≤ fι(R+S) for any R,S ∈ Q(L) we have to consider
how the algorithm 4.1. computes R + S from R ∪ S. First of all we introduce the
following notation. If T ⊆ D(L), then we set V = T ∩ L. Thus if T ⊆ D(L) is
reduced, then |V | = 1.

The reduced set R + S is computed from T0 = R ∪ S by the algorithm 4.1. We
start with V0 = {tR, tS}. Thus

fι(R) + fι(S) =
∑
x∈V0

f(x) +
∑

(a0,a1,b0,b1)ij∈R∪S

ιij(f(a0), f(a1), f(b0), f(b1)).

In the first step of the algorithm, any pair of elements (a0, a1, b0, b1)i0 and
(a0, a1, b0, b1)i1 in R ∪ S is replaced in T1 by the single element ai ∈ L ∩ T1 =
V1. Since ιi0(f(a0), f(a1), f(b0), f(b1)) + ιi1(f(a0), f(a1), f(b0), f(b1)) = f(ai) the
replacement does not change the value of the right-hand side of the last dis-
played equality. Since the same is true for the replacement of (a0, a1, b0, b1)0j and
(a0, a1, b0, b1)1j by bj , we get

fι(R) + fι(S) =
∑
x∈V1

f(x) +
∑

(a0,a1,b0,b1)ij∈T1

ιij(f(a0), f(a1), f(b0), f(b1)).

The second step of the algorithm changes only the set V1, all the elements of V1

are replaced by their sum denoted by tT2 . Since f(tT2) =
∑

x∈V1
f(x), we get

fι(R) + fι(S) = f(tT2) +
∑

(a0,a1,b0,b1)ij∈T2

ιij(f(a0), f(a1), f(b0), f(b1)).

The third step of the algorithm replaces any (a0, a1, b0, b1)ij ∈ T2 such that
ai′ ≤ tT2 and the element tT2 by the single element bj + tT2 . Since f(bj) +
f(tT2) = ι0j(f(a0), f(a1), f(b0), f(b1)) + ι1j(f(a0), f(a1), f(b0), f(b1)) + f(tT2) ≤
ιij(f(a0), f(a1), f(b0), f(b1)) + f(ai′) + f(tT2) = ιij(f(a0), f(a1), f(b0), f(b1)) +
f(tT2) ≤ f(bj) + f(tT2), the replacement again does not change the value of the
right-hand side of the last displayed equality. Since this is true for any other re-
placement made in the third step, we get

fι(R) + fι(S) = f(tT3) +
∑

(a0,a1,b0,b1)ij∈T3

ιij(f(a0), f(a1), f(b0), f(b1)).

Finally, in the last step of the algorithm we remove from the set T3 all the
elements (a0, a1, b0, b1)ij such that either ai ≤ tT3 or bj ≤ tT3 . In this case either
ιij(f(a0), f(a1), f(b0), f(b1)) ≤ f(ai) ≤ f(tT3) or ιij(f(a0), f(a1), f(b0), f(b1)) ≤
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f(bj) ≤ f(tT3). None of the removals changes the value of the right-hand side of
the last equality. But after the removals we obtain the reduced set R+ S, hence

fι(R) + fι(S) = fι(R+ S).

�

Now let us set Q0(L) = L and Qn+1(L) = Q(Qn(L)) for a non-negative integer
n. Thus every Qn(L) is a subsemilattice of Qn+1(L) by Lemma 4.2. Let us set
C(L) =

⋃
nQn(L). Thus given a distributive semilattice M , a refinement operator

ιij , i, j = 0, 1, and a semilattice homomorphism f : L → M , then by repeated
application of Theorem 4.3 we get that there exists a special homomorphism f[ι] :
C(L) →M extending f .

Theorem 4.4. For every semilattice L, C(L) is distributive.

Proof. Let a0, a1, b0, b1 ∈ C(L) be such that a0 + a1 = b0 + b1. There exists n such
that a0, a1, b0, b1 ∈ Qn(L), hence (a0, a1, b0, b1) ∈ D0(Qn(L)). If 0 /∈ {a0, a1, b0, b1},
we set ιij(a0, a1, b0, b1) = {(a0, a1, b0, b1)ij , 0} ∈ Qn+1(L), i, j ∈ 0, 1. Applying the
algorithm 4.1 we easily compute that {(a0, a1, b0, b1)i0, 0}+ {(a0, a1, b0, b1)i1, 0} =
{ai} and {(a0, a1, b0, b1)0j , 0} + {(a0, a1, b0, b1)1j , 0} = {bj} in Qn+1 ⊆ C(L). If
a0 = 0 (the other cases are similar), we set ι00(a0, a1, b0, b1) = ι01(a0, a1, b0, b1) =
0, ι10(a0, a1, b0, b1) = b0, ι11(a0, a1, b0, b1) = b1. We have a refinement operator
on L. �

It is easy to see that assertions analogous to 2.5 and 2.6 hold also for C(L).

5. Failure of WURP in some C(L)

Let L(Ω) be the same lattice as in the section 3. We consider the 0-subsemilattice
L(2) of L(Ω) generated by the elements {a0

0, a
0
1, a

1
0, a

1
1} (0, 1 ∈ Ω). Let G be the

0-subsemilattice of Q(L(2)) generated by the elements cij = {0, (a0
0, a

0
1, a

1
0, a

1
1)ij},

i, j = 0, 1.

Lemma 5.1. G is isomorphic to 24.

Proof. Let ϕ : 24 → G and ψ : L(2) → 24 be as in the proof of 3.1. Further we de-
fine the refinement operator ιij on 24 by ιij(x0, x1, y0, y1) = xi∧yj . By 4.3, ψ can be
extended to ψι : Q(L(2)) → 24. We have ψι(cij) = ιij(ψ(a0

0), ψ(a0
1), ψ(a1

0), ψ(a1
1))+

ψ(0) = ψ(a0
i ) ∧ ψ(a1

j ). Hence ψι(c00) = (1, 0, 0, 0), ψι(c01) = (0, 1, 0, 0), ψι(c10) =
(0, 0, 1, 0) and ψι(c11) = (0, 0, 0, 1). This shows that ψι is inverse to ϕ, hence it is
an isomorphism. �

Theorem 5.2. If card(Ω) ≥ ℵ2 then C(L(Ω)) does not have WURP at 1.

Proof. We proceed similarly as in 3.2. Let us consider the same map f : L(Ω) →
L(3) ⊆ C(L(3)) as in 3.2. Now we define a special refinement operator on C(L(3)).
Let G01 be the 0-subsemilattice of C(L(3)) described in 5.1. Let G02 and G12 be
analogous subsemilattices defined by the elements a0

0, a
0
1, a

2
0, a

2
1 and a1

0, a
1
1, a

2
0, a

2
1,

resp. Since all Gkl and their intersections are lattices, we can use the meet opera-
tion. Thus, for x0, x1, y0, y1 ∈ Gkl, x0 +x1 = y0 +y1, we can set ιij(x0, x1, y0, y1) =
xi ∧ yj . (The meet is taken in Gkl.) If {x0, x1, y0, y1} * G01, G02, G12, we define
ιij(x0, x1, y0, y1) = {0, (x0, x1, y0, y1)ij}, similarly as in the proof of 4.4.
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It is easy to verify that f is a homomorphism. By remarks after 4.3 it can be
extended to a homomorphism f[ι] : C(L(Ω)) → C(L(3)). We denote d0 = f[ι](c12),
d1 = f[ι](c02), d2 = f[ι](c01). Again we have d0 ∈ G12, d1 ∈ G02 and d2 ∈ G01.

Since f[ι] is a homomorphism, we have d0 ≤ a1
0, a

2
1, d1 ≤ a0

0, a
2
1, d2 ≤ a0

0, a
1
1.

Further, we have the equalities d0 + a1
1 + a2

0 = d1 + a0
1 + a2

0 = d2 + a0
1 + a1

0 = 1.
In the Boolean algebra G12 (isomorphic to 24) there exists only one element d0

satisfying these requirements, namely
d0 = {0, (a1

0, a
1
1, a

2
0, a

2
1)01}.

For similar reasons,
d1 = {0, (a0

0, a
0
1, a

2
0, a

2
1)01},

d2 = {0, (a0
0, a

0
1, a

1
0, a

1
1)01}.

From the inequality c02 ≤ c01 + c12 we obtain that d1 ≤ d0 + d2. But we
can check directly that d0 + d2 = {0, (a1

0, a
1
1, a

2
0, a

2
1)01, (a

0
0, a

0
1, a

1
0, a

1
1)01}. Using

definition of order on Q(L(3))) we see that d1 = {0, (a0
0, a

0
1, a

2
0, a

2
1)01} 6≤ d0 + d2 - a

contradiction. �
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