UNIFORM REFINEMENTS IN DISTRIBUTIVE SEMILATTICES

MIROSLAV PLOSCICA AND JIRf TUMA

ABSTRACT. This is a contribution to the well known problem whether every
algebraic distributive lattice can be represented as the congruence lattice of
some lattice. We present two constructions of distributive semilattices with-
out a special refinement property, called WURP. Failure of WURP means
that these semilattices are difficult to represent as semilattices of compact
congruences of lattices. In fact, we do not know if these semilattices have
such representation. Our construction is motivated by a recent paper of F.
Wehrung, who found a similar example using ordered vector spaces.

1. INTRODUCTION

A distributive semilattice is a (join)-semilattice S with 0 satisfying the following
condition. Whenever z,y,z € S and x + y > z, then there are elements 2’ < x,
1y’ < y such that 2’ + 9’ = 2. Distributivity of semilattices can be also defined in a
more symmetric way. Whenever xq, x1,yo,y1 € S are such that zg + 1 = yo + v1,
then there are elements z;; € S, 4,5 = 0, 1, such that z;0 + z;1 = x;, 20; + 215 = Y;,
1,j =0,1.

Distributive semilattices are exactly semilattices of compact elements of distribu-
tive algebraic lattices. So the classical Congruence Lattice Problem whether every
algebraic distributive lattice can be represented as the congruence lattice of a lat-
tice can be reformulated as the problem whether every distributive semilattice is
isomorphic to the semilattice of compact congruences of a lattice.

In [3] F. Wehrung formulated a so called Uniform Refinement Property (URP)
for distributive semilattices and constructed a distributive semilattice that fails this
property. In a subsequent paper [4] he proved that compact congruence semilattices
of a large class of lattices satisfy (URP). This class of “congruence splitting” lattices
contains all sectionally complemented lattices, relatively complemented lattices,
atomistic lattices, and is closed under direct limits.

On the other hand, the authors of the present paper together with F. Wehrung
proved in [2] that compact congruence semilattice of the free lattice with at least
Ny free generators in any non-distributive variety of lattices does not satisfy even
weaker condition, which is called the Weak Uniform Refinement Property (WURP).
We say that a distributive semilattice S satisfies (WURP) at an element e € S if,
for every system af', o € £, ¢ = 0, 1 of elements of S such that af +af = e for every
a €, there are elements ¢®® € S, o, 3 € Q satisfying the following conditions:

(1) ? < af,af,
(2) P 4 af + ag =e,
(3) ¢ < B 4 P,
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Hence the failure of (WURP) at some point of a distributive semilattice S is not
an obstacle for representing this semilattice as the compact congruence semilattice
of a lattice.

In the present paper we present two constructions of distributive semilattices
that fail (WURP). Both constructions consist in a “free distributive extension” of
any semilattice with 0. The constructions differ according to the definition of dis-
tributivity we use. The proof that our “free distributive extensions” fail (WURP)
depend on the following Kuratowski’s characterization of N that appeared in [1].
The discovery that Kuratowski’s theorem can be used to prove that certain dis-
tributive semilattices fail (URP) or (WURP) is due to F. Wehrung [3].

In what follows [S]™ denotes the set of all n-element subsets of a set S and [5]
denotes the set of all finite subsets of S.

<w

[. Kuratowski’s Theorem] Let n be a non negative integer, let S be a set of car-
dinality at least R, and let f : [S]™ — [S]<¥ be any mapping. Then there exists
U € [S]"" such that x & f(U \ {z}) for every x € U.

2. FREE DISTRIBUTIVE EXTENSIONS OF SEMILATTICES
Let (L,+) be a (join-) semilattice with 0. Let us denote
C(L) ={(z,y,2) €L |z +y > z}.
A finite set R C C(L) is called reduced if the following conditions hold:
(1) R contains exactly one triple of the form (z,x,z); this element x will be
denoted by tg;
(2) if (z,y,2) € Rand (y,x,2) € Rthen z =y = z;
(3) if (z,y,2) € R\ {tr,tr,tr} then x £ tr, y £ tr, 2 £ tr.
Let R(L) be the family of all reduced sets. We define an order relation on R(L) by

R<S iff, for every (z,y,2) € R\S, z<tg or z<tg.

Lemma 2.1. (R(L),<) is a semilattice. The supremum R+ S can be computed
by the following algorithm.

(i) Set Ty = RUS. If Ty contains two different elements (z,y, z) and (y,z, 2),
we replace this pair of elements by a single element (z, z,z). After all such
replacements we obtain a set T7.

(ii) Let (z1,2z1,21),- .., (Tn,Tn,Ty) be all elements of the form (x,z,x) in Ty.
We replace all these elements by the single element (Xx;, Ya;, Yx;) and
denote the resulting set by Ts.

(iii) If there is (x,y,z) € Ty such thaty < tr,, we replace the elements (x,vy, z),
(tr,,tr,,t,) by the element (z + tr,,z + tp,, 2z + t1,). (Of course, this
changes the value of tr,.) We repeat this procedure until no such situation
occurs. Let Ts be the resulting set.

(iv) R+ S is obtained from T3 by deleting all elements (x,y, z) with x < tp, or
z S tT3~

Proof. 1. First we show that R+ .S € R(L). The condition (1) is ensured by the
step (ii) and remains valid after performing steps (iii) and (iv). The condition (2) is
satisfied because of the step (i). The condition b & tg1g for every (a,b,c) € R+ S
holds because of the step (iii) and the conditions a £ tgrys, ¢ £ trys are ensured
by the step (iv) of our algorithm.
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IT. Now we show that R < R+ S. (The proof that S < R+ S is similar.)
Because of (ii) we have tg +ts < trt+s. Suppose that (a,b,c) € R\ (R+S). Since
(a,b,c) € RU S, the triple (a,b,c) must have been deleted in some step of the
algorithm. If this happened in the step (i) then (c,c, ) was one of the summands
in the step (ii) and therefore ¢ < tgyg. If this happened in the step (ii) then
(a,b,c) is of the form (z,x,x) and z < tgyg. If this happened in the step (iii) then
c+tr, < tpres, hence ¢ <tpyg. If this happened in the step (iv), the case is trivial.

III. Let @ € R(L), R < Q, S < Q. We show that R+ S < Q. Let (z,y,2) €
(R+9)\Q. If (z,y,2) € RUS then x < tg or z < tg, because R < @, S < Q.
The remaining case is that (x,y, z) appeared in some step of the algorithm. The
only such triple is (tr+s,tr+s,tr+s) and we need to show that tpys < tg. At the
beginning we have tgp < tg and tg < tg. In the step (i), new triples (c,c,c) can
appear such that (a,b,c) € R, (b,a,c) € S. The set () cannot contain both (a, b, ¢)
and (b,a,c). If (a,b,¢) ¢ Q (the other case is similar) we have a <tg or ¢ < tg. If
a < tg then (b,a,c) ¢ @, because Q is reduced. Consequently, b < tg or ¢ < tg. If
b < tg then also ¢ < a+b < tg. Hence, in any case, ¢ < tg. This means that after
the step (ii) we have ¢y, < tg. Consider now the step (iil). Let (a,b,¢) € RUS,
b < tr,. Then b < tq, hence (a,b,c) ¢ @ and therefore a < tg or ¢ < tg. The case
¢ < tg gives us the desired inequality ¢ +t7, <tg. If a <tg thenc <a+b<tg
with the same conclusion. Hence, after the step (iii) we have tpys = t, < tg and
the step (iv) is inessential. O

Lemma 2.2. The assignment © — {(z,x,x)} defines a 0-preserving semilattice
embedding L — R(L).

Proof. Obvious. O

By an interpolant on a semilattice L we mean any function ¢ : C(L) — L
that satisfies the conditions ¢(x,y,2) + t(y,x,2) = z and v(x,y,2) < x for every
(x,y,2) € C(L). It is obvious that an interpolant exists on a semilattice L if and
only if L is distributive. Also notice that an interpolant on a distributive semilattice
L is not determined uniquely.

Theorem 2.3. Let f: L — M be a semilattice homomorphism. Suppose that v is
an interpolant on M. Let us define a map f, : R(L) — M by

fR) =Y uf(@), f(y), (=)

(z,y,2)ER

Then f, is a semilattice homomorphism and f, | L = f.

Proof. For (x,y,z) € C(L) we have (f(x), f(y), f(2)) € C(M), so f, is well defined.
Since = = t(z, z, x) + t(z,z,x) = v(x,z,x), we have f, [ L = f. Now we claim that

LR+S) = > (@), f(), [(2) = L.(R) + [.(S).

(z,y,2)ERUS

Let (z,y,2) € RUS. Since R, S < R+ S, we have (z,y,2) € R+ S or x <tgrig or
2z <tpys. I (z,9,2) € R+ S then o(f(z), f(y), f(2) < f(R+S). If 2 < trys then

W(f(2), f(y), f(2) < f(2) < f(tres) = o(f(trts): f(trts): f(trts)) < fl(R+S).
A similar argument holds in the case © < tgyg. This shows that f,(R) + f.(S) <

[L(R+S).
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To prove the inverse inequality, it suffices to show that

fQrts) = Uf(tr+s), f(tres), f(tres)) < f(R) + fu(S).
Clearly, f(tr) < f.(R), f(ts) < f.(S). Let us consider R + S computed by

the algorithm from 2.1. Suppose that (a,b,¢) € R, (b,a,c) € S. Then f(c) =

u(f(a), f(b), f(e)) +u(f(b), f(a), f(c)) < fi(R)+ f.(S). Since f is a homomorphism,
after step (ii) we have f(tr,) < f.(R) + f.(S). Now let (a,b,c) € RUS, b < tp,.

< L
Then f(c) = u«(f(a), f(b), f(c)) + (f(b), f(a), f(c)) < u(f(a), f(D), f(c)) + f(b) <
f(R) + f.(S), hence f(c+tr,) = f(c) + f(tr,) < f.(R) + f.(S). This shows that
f(tr+s) < f.(R) + f.(S) holds at the end of the algorithm. O

Let us set Ro(L) = L and R,41(L) = R(Rnp(L)) for n = 0,1,2,.... Up to
isomorphism we can assume that R, (L) is a subsemilattice of R,1(L). Let us
set D(L) = Up—oRn(L). Then every semilattice homomorphism f : L — M
(with M distributive having an interpolant ¢) can be extended to a homomorphism
Ju: D(L) — M, similarly as in 2.3.

Theorem 2.4. For every semilattice L, D(L) is distributive.

Proof. Let z,y,z € D(L), x +y > z. Let n be the least number such that x,y,z €
Rn(L). We set o(z,y,2) = {(z,9,2),(0,0,0)} € Rps1(L). If 2 =y = z or
0 € {z,y, 2} then i(z,y, z) = z.) This defines an interpolant on D(L). O

Let L be a 0-subsemilattice of M. Then, obviously, C(L) is a subset of C(M)
and R(L) is a O-subsemilattice of R(M). Moreover, the diagram

L — M

l l

R(L) —— R(M)

commutes, which means that natural embeddings L — R(L) and M — R(M) can
be simultaneously regarded as inclusions. As a consequence we obtain

Lemma 2.5. If L is a 0-subsemilattice of M then D(L) is a 0-subsemilattice of
D(M).

Further, let M be a directed union of its O-subsemilattices L; (i € I). Then
C(M) is a directed union of its subsets C(L;) and therefore R(M) is a directed
union of its 0-subsemilattices R(L;). Consequently we have

Lemma 2.6. If M is a directed union of its 0-subsemilattices L; (i € I) then D(M)
is a directed union of its 0-subsemilattices D(L;).

3. FAILURE oF WURP

Let 2 be a set and for every o € Q) let af, af be two different elements. Suppose
moreover that the sets {ag,a$}, {al,a}} are disjoint for any two o, € Q. Let
L(£2) be the family of all A CU = {a§ | « € Q} U{af | a € Q} that satisfy

(1) if {a§,as} C A for some a then A =U;
(2) it A# U then A is finite.
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It is clear that L(Q2) is a semilattice in which the join of two elements is either
set-theoretical union or 1 = U. (In fact, L(Q?) is the free semilattice with generators
satisfying af + af =1 for all o)

Now let us consider the 0O-subsemilattice L(2) of L(Q2) generated by the set
{ad,a?,a},ai} (0,1 € Q). Let G be the 0-subsemilattice of R(L(2)) generated by
the elements

(1) 00 — {(07070)a(agaatl)aa(l)%(a(l)aa%aag)};
(2) = {(07070)1(ag’a?va%)v(a%va(lhag)};
(3) :{(070’0)’( 0 0 1)7(0'(1)70'%70'(1))}’
(4) - {(07070) (alaa87a%) (aiva(l)va(l))}'

Let 2 be the 2-element semilattice {0, 1}. It is well known that, for a natural num-
ber n, 2" is the free 0-semilattice with n generators (1,0,0,...,0),(0,1,0,...,0),...
(0,0,0,...,1).

Lemma 3.1. G is isomorphic to 2%.

Proof. Since 2% is free, we have a homomorphism ¢ : 2% — G with (1,0,0,0) =
0 (0,1,0,0) = L, ©(0,0,1,0) = 19 »(0,0,0,1) = c''. Further we define the
interpolant ¢ on 24 by «(z,y, 2) = xAz. (2% is a lattice.) Let us consider the embed-
ding ¢ : L(2) — 2% determined by v¥(a) = (1,1,0,0), ¥(a) = (0,0,1,1), ¥(a) =
(1,0,1,0), ¥(ai) = (0,1,0,1). By 2.3, ¥ can be extended to 1, : R(L(2)) — 2*.
We have 4, (¢%0) = u(u(a6). 6(a), ¥(a) + (wlad). v(ad). Vi) = (1.0.0,0) +

(1,0,0,0) = (1,0,0,0) and similarly, ,(c’') = (0,1,0,0), ¥,(c*®) = (0,0,1,0),
¥, (c't) = (0,0,0,1). This shows that 1, is inverse to ¢, hence it is an isomor-
phism. (I

Theorem 3.2. If card(2) > Ry then D(L(Y)) does not have WURP at 1.

Proof. For every a € Q we have af + af = 1. For contradiction, suppose that
elements ¢*? have required properties.

For any set X C Q let L(X) be the O-subsemilattice of L(£2) generated by
{af | a« € X}U{af | @ € X}. By 2.5 we have the canonical embedding D(L(X)) —
D(L()), which we regard as inclusion. Obviously, L(f2) is a directed union of its 0-
subsemilattices L(X), where X runs through finite subsets of 2. By 2.6, D(L(2))
is a directed union of its O-subsemilattices D(L(X)), X finite. Hence, for every
a, 8 € Q there is a finite set Xy, gy (Xap for short) such that c®? and ¢?* belong
to D(L(X4p)). By Kuratowski’s theorem there is a 3-element set 3 = {0,1,2} C Q
such that 0 ¢ )(127 1 ¢ XOQ, 2 ¢ X01.

Let us consider the map f: L(Q) — L(3) C D(L(3)) defined by

And{ad,a},a?,al,al,a?} otherwise.

1 if af € A for some « 0,1,2
f(A){ ; ¢ {0.1,2}

Now we define a special interpolant on D(L(3)). Let Go1 be the 0-subsemilattice
of D(L(3)) described in 3.1. Let G2 and G122 be analogous subsemilattices using
the elements a2, a?. Since all G; are lattices, we can use the meet operation. Thus,
for z,y,z € Gij, z < x +y, we set o(x,y,2) = x A z. (The intersection is taken in
G;;. There is no ambiguity, since the intersection of two different G; is a sublattice
of both. For instance, G()l n G02 = {O, ao,al} ) If {x,y,z} g_ G()l, GOQ, Glg, we
define «(x,y, z) as in the proof of 2.4.
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It is easy to see that f is a homomorphism. By 2.3 it can be extended to a
homomorphism fi,; : D(L(2)) — D(L(3)). We denote dy = fi,(c'?), d1 = fi,; (™),
da = fiy(c"h).

The definition of fj,) implies that d; € D(L(3 \ {i})) for i = 0,1,2. Indeed, by
induction we can prove that R, (L(Q2\ {i})) is mapped by f,) into D(L(3\ {i})) for
every n. In fact, the definition of ¢ ensures that dy € G12, di € Goz and dy € Gy .

Since fj, is a homomorphism, we have dy < af,ai, di < af,af, d2 < ag,af.
Further, we have the equalities dp+a} +a3 = di +al +a% = da+al+a} = 1. In the
Boolean algebra G5 there exists only one element dj satisfying these requirements,
namely
do = {(07 0, O)’ (a(1)7 ah a%)’ (a%v a(2)7 a(l))}

For similar reasons,

di = {(Oa 0, 0)7 ((18, a(lja CL%), (ai a%? ag)}a
d> ={(0,0,0), (a8, a(l)a a%)a (ah a(l), ag)}

From the inequality "2 < O 4 12 we obtain that dy < dy + do. But we can
check directly that this is not true - a contradiction. (I

4. FREE DISTRIBUTIVE EXTENSIONS OF SEMILATTICES - ANOTHER VERSION

In this section we present an alternative construction of a “free distributive
extension” of a given semilattice L.
Let (L,+) be a (join-) semilattice with 0. Let us denote

Do(L) = {(ao,al,bo,bl) el* | ag +ay = by + bl}
Further we denote
D(L) = (Do(L) x {0,1} x {0,1}) U L.

Instead of ((ao,a1,b0,b1),1%,7) we shall write (ag,a1,bo,b1);;. Moreover, if 4,5 €
{0, 1}, then we denote by 4’ the other element of {0, 1} different from ¢ and similarly
j' is the other element of {0,1} different from j. A finite set R C D(L) is called
reduced if the following conditions hold:

(1) R contains exactly one element of L; this element x will be denoted by ¢g;
(2) ifi € {0,1}, then (ag, a1, by, b1)i0, (@0, a1, bo, b1);1 do not belong to R simul-
taneously;
(3) if j € {0, 1}, then (ao,al,bo,bl)oj, (ao,al,bo,bl)lj do not belong to R si-
multaneously;
(4) if (ao,a1,bo,b1)i; € R, then ag £ tr, a1 £ tr, bo £ tr, b1 £ tr.
Let Q(L) be the family of all reduced sets. We define an order relation on Q(L) by
R < S if and only if tg < tg and, moreover,

for every (ao,a1,bo,b1)i; € R\S, either a; <tg or b; <tg.

Lemma 4.1. (Q(L), <) is a semilattice. The supremum R + S can be computed
by the following algorithm.
(1) Set Ty =RUS. If (ao, ai, by, bl)iO €Ty and (ao, ai, by, bl)ﬂ €Ty fOT’ some
i € {0,1}, then include also a; to the set Ty. If (ag,a1,bo,b1)o; € Ty and
(ag,ai,bo,b1)1; € Ty for some j € {0,1}, then include b; to Ty. After all
such inclusions we obtain a set Ty.
(ii) Let x1,...,x, be all elements of LNTy. We replace all these elements by
the single element > x; and denote the resulting set by Ts.
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(iil) If there is (ao,a1,b0,01)i; € To and ay < tp,, then replace the elements
(@0, a1,b0,b1)i5, tr, by the element b; + tp,. If there is (ag,a1,bo,b1)i; €
Ty and by < tr,, then replace (ap,a1,bo,b1)i; and tr, by a; + tr,. (Of
course, this changes the value of tr,.) We repeat this procedure until no
such situation occurs. Let T3 be the resulting set.

(iv) R+ S is obtained from Ts by deleting all elements (ag, a1,bo, b1)i; such that
either a; <tp, orb; <trp,.

Proof. 1. First we show that R+ S € Q(L). The condition (1) is ensured on the
step (ii) and remains valid after performing steps (iii) and (iv). The conditions
(2) and (3) are satisfied because of the step (i). The condition a;/,b;s £ trys for
every (ao,a1,bo,b1)i; € R+ S holds because of the step (iii) and the conditions
a;,b; £ trys hold because of the step (iv) of our algorithm.

IT. Now we show that R < R+S. (The proof that S < R+ S is similar.) Because
of (ii) we have tg < tgyg. Suppose that (ag,a1,bo,b1);; € R\ (R+ S). Since
(ao,a1,b0,b1)i; € RU S, the six-tuple (ao, a1, bo,b1);; must have been deleted in
some step of the algorithm. If this happened in step (iii), then either a;+t7, < tris
or b; +tr, <tgrys. If this happened in step (iv), the case is trivial.

III. Let @ € Q(L), R < @, S < Q. We are going to show that R + S < Q.
Let (ag,a1,bo,b1)i; € (R+S)\ Q. Since only elements of L can appear in R+ S
without being already in R U S, we get that (ag,a1,b0,b1);; € RUS. Thus either
(CLQ, a1, by, bl)ij S R\Q or (ao,al, bo, bl),'j S S\Q In both cases, either a; < tQ or
b < tg.

It remains to prove trys < to. We have that tg +tg < tg. First of all
we prove that for every element x € T3 N L we get x < tg. So suppose that
(ao, ai, bo, bl)i07 (ao, ay, bo, bl)il c RUS. We get that the elements (ao, ay, bo, bl)iO
and (ag, a1, bo, b1 );1 cannot be simultaneously in @ since @ is reduced. If none of the
elements (ag, a1, bo, b1)i0, (ag, a1,bg, b1)i1 is contained in @, then (since R, S < Q)
we get that either a; < g or by, b1 < tg. But in the latter case also a; < bg+b1 < tg.
In the remaining case, one of the elements, say (ag, a1, bg, b1):o belongs to @ and
(ag,a1,bo,b1)in & Q. Again, the assumption (ag,a1,bp,b1);1 € @ implies that
either a; < tg or by < tg,which (together with (ag,a1,bo,b1)i0 € Q) contradicts
the condition (4) of the definition of reduced sets for (). Thus in each case a; < tq.
The case (ag, a1, bo, b1)o;, (@0, a1,b0,b1)1; € RU S is treated similarly. Hence for
every x € Ty N L we get x < tg. But then also their sum is less than or equal to
tg, hence tr, < tg.

The element t7, can be further increased at step (iii). If this is the case suppose
that (0,0, ai, bo7 bl)ij S TQ and a; S th S tQ. Thus (ao,al, bo, bl)z’j € Q because of
condition (4). Then either a; < tg or b; < tg. In the former case b; < ap+ a1 =
a; +ay < tg. Thus in all cases b; +t1, < tg. The other case of step (iii) is treated
similarly.

Since tr4s = try, we have proved that tpys < tg. [l

Lemma 4.2. The semilattice L is a 0-subsemilattice of Q(L). (We identify x € L
with {z} € Q(L).)
Proof. Obvious. 0

By a refinement operator on a semilattice L we mean a collection of four func-
tions ¢;; : Do(L) — L, i,j = 0,1, satisfying the conditions t;o(ao, a1,bo,b1) +
Li1<(l0,(l1,b0,b1)) = Qa4 and Loj(ao,al,bo,bl) + Llj(ao,al,bo,bl) = bj for every
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i,7 = 0,1. It is obvious that a refinement operator exists on a semilattice L if
and only if L is distributive. Also notice that a refinement operator on a distribu-
tive semilattice L is not determined uniquely.

Theorem 4.3. Let f: L — M be a semilattice homomorphism. Suppose that v;;,
i, = 0,1, is a refinement operator on M. Let us define a map f,: Q(L) — M by

LR =ftr)+ D wi(f(ao), flar), f(bo), f(br))-

(ao,a1,b0,b1)i; ER
Then f, is a semilattice homomorphism and f, | L = f.

Proof. For every (ag, a1, bo,b1) € Do(L) we have that (f(ao), f(a1), f(bo), f(b1)) €
Dy(M), so f, is well defined. Moreover, f, | L = f.

To show that f,(R)+ f.(S) < f.(R+S) for any R, S € Q(L) we have to consider
how the algorithm 4.1. computes R + S from R U S. First of all we introduce the
following notation. If T C D(L), then we set V.= T'N L. Thus if T C D(L) is
reduced, then |V] = 1.

The reduced set R + S is computed from Ty = RU S by the algorithm 4.1. We
start with Vp = {tR,tS}. Thus

FAR)+ £.(S) =Y f(a) > vij (f(ao), f(ar), f(bo), f(b1))-

x€V) (ao,al,bg,bl)ij €RUS

In the first step of the algorithm, any pair of elements (ag,a1,bo,b1);0 and
(ag,a1,bo,b1);1 in RU S is replaced in 77 by the single element a; € LNT, =
Vi. Since wio(f(ao), f(a1), f(bo), f(b1)) + tir(f(ao), f(ar), f(bo), f(b1)) = f(a:) the
replacement does not change the value of the right-hand side of the last dis-
played equality. Since the same is true for the replacement of (ag, a1, bo, b1)o; and
(ao,al,bo,bl)lj by bj, we get

fR)+ £(S) =D f(=) > wi(f(a0), far), f(bo), f(br)-

zeV] (ao,a1,b07b1)ij€T1

The second step of the algorithm changes only the set V7, all the elements of V;
are replaced by their sum denoted by tr,. Since f(tr,) = > oy, f(7), we get

f(R) + fu(S) = f(tr,) + > tij(f(ao), fax), f(bo), f(b1)).

(ao,a1,bo,b1)ij €T

The third step of the algorithm replaces any (ag,a1,bo,b1);; € To such that
a;; < tp, and the element ¢y, by the single element b; + t7,. Since f(b;) +
flt,) = 10;(f(a0), f(a1), f(bo), f(b1)) + t1;(f(a0), f(ar), f(bo), f(br)) + [f(tr,) <
vij(f(ao), f(ar), f(bo), f(b1)) + flair) + f(tr,) = ¢ii(fao), flar), f(bo), f(b1)) +
ftr,) < f(b;) + f(tr,), the replacement again does not change the value of the
right-hand 51de of the last displayed equality. Since this is true for any other re-
placement made in the third step, we get

fu(R) + f.(S) = f(tr,) + > tij(f(ao), fax), f(bo), f(b1)).

(ao,a1,bo,b1)i; €T3

Finally, in the last step of the algorithm we remove from the set T3 all the
elements (ag, a1,bo, b1)i; such that either a; < tp, or b; < tr,. In this case either

tij(f(ao), flar), f(bo), f(b1)) < flas) < f(tz,) or tii(f(ao), f(a1), f(bo), f(b1)) <



UNIFORM REFINEMENTS IN DISTRIBUTIVE SEMILATTICES 9

f(b;) < f(tr,). None of the removals changes the value of the right-hand side of
the last equality. But after the removals we obtain the reduced set R + S, hence

f(R) + f.(S) = f(R+S5).
(]

Now let us set Qp(L) = L and Q,,+1(L) = Q(Q,(L)) for a non-negative integer
n. Thus every Q,(L) is a subsemilattice of Q,,+1(L) by Lemma 4.2. Let us set
C(L) =U,, Qn(L). Thus given a distributive semilattice M, a refinement operator
tij, 9§ = 0,1, and a semilattice homomorphism f : L — M, then by repeated
application of Theorem 4.3 we get that there exists a special homomorphism f|,) :
C(L) — M extending f.

Theorem 4.4. For every semilattice L, C(L) is distributive.

Proof. Let ag,a1,bp,b1 € C(L) be such that ag + a3 = by + by. There exists n such
that ap, ai, bo7 b € Qn(L), hence (ao, ay, bo, bl) S Do(Qn(L)) If 0 ¢ {ao, ai, bo, bl},
we set Lij(ao,al,bo,bl) = {(ao,al,bo,bl)ij,()} S Qn+1(L), 1,7 €0,1. Applying the
algorithm 4.1 we easily compute that {(ao, a1, bo, b1)i0,0} + {(ao, a1, bg, b1)i1,0} =
{ai} and {(ao,al,bo,bl)oj,O} + {(a07a17bo,b1)1j70} = {b]} in QnJrl - C(L) If
ap = 0 (the other cases are similar), we set tqo(ag, a1, bo,b1) = to1(ag,a1,bo,b1) =
0, t10(ag, a1, bo,b1) = bo, t11(ag,a1,by,b1) = by. We have a refinement operator
on L. U

It is easy to see that assertions analogous to 2.5 and 2.6 hold also for C(L).

5. FAILURE OF WURP IN SOME C(L)

Let L(2) be the same lattice as in the section 3. We consider the 0-subsemilattice
L(2) of L(Q) generated by the elements {a$,a?,a}, ai} (0,1 € Q). Let G be the

0-subsemilattice of Q(L(2)) generated by the elements ¢ = {0, (ad,a?, a}, ai)i;},
i,j=0,1.

Lemma 5.1. G is isomorphic to 2%.

Proof. Let ¢ : 24 — G and ¢ : L(2) — 2% be as in the proof of 3.1. Further we de-
fine the refinement operator ¢;; on 2% by ¢;; (o, z1, Yo, y1) = x;Ay;. By 4.3, can be
extended to 1, : Q(L(2)) — 2% We have %(Cij) = Lij (w(a’g)a ¢(a?)7 w(a(l))7 w(a%))—i_
'(/}(O) = ¢(G?) A ¢(%1) Hence '(/)L(COO) = (17070’0)7 1pL(C(n) = (07 1’070)7 %(Clo) =
(0,0,1,0) and v, (ctt) = (0,0,0,1). This shows that 1), is inverse to ¢, hence it is
an isomorphism. [

Theorem 5.2. If card(2) > Ny then C(L(Q))) does not have WURP at 1.

Proof. We proceed similarly as in 3.2. Let us consider the same map f: L(Q) —
L(3) CC(L(3)) as in 3.2. Now we define a special refinement operator on C(L(3)).
Let Go1 be the 0-subsemilattice of C(L(3)) described in 5.1. Let Goz and Giz be
analogous subsemilattices defined by the elements al,al,a2,a? and a},al,a?,a?,
resp. Since all Gy; and their intersections are lattices, we can use the meet opera-
tion. Thus, for zo, z1, Y0, y1 € Gki, To+x1 = Yo+ Y1, we can set ¢;; (2o, T1,Y0, Y1) =
iz A Y- (The meet is taken in le.) If {Io,ﬂjl,yo,yl} g_ Gol,GOQ,Glg, we define
tij(xo, 21,Y0,y1) = {0, (20, Z1,Y0,Y1)ij}, similarly as in the proof of 4.4.
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It is easy to verify that f is a homomorphism. By remarks after 4.3 it can be
extended to a homomorphism fi,; : C(L(Q2)) — C(L(3)). We denote do = fi,j(c*?),
dy = f[L] (002)7 dy = fm(COl). Again we have dy € G12, d1 € Goo and ds € Go.

Since fj, is a homomorphism, we have dy < af,ai, di < af,af, d2 < ag,af.
Further, we have the equalities dy + ai + af = di + af + a% = da + @) + a} = 1.
In the Boolean algebra G5 (isomorphic to 2%) there exists only one element dj
satisfying these requirements, namely
do = {0’ (a(1)7 a%v a(2)7 a%)OI}'

For similar reasons,

di = {Ov (agv a(1)7 a(2)7 a%)01}7
da = {0, (a87 a(l), a(l), a%)(ﬂ}'

From the inequality 9?2 < O 4 12 we obtain that dy < dy + do. But we
can check directly that do + do = {0, (ag,al, a3, a?)o1, (ad,a?,al,al)o1}. Using
definition of order on Q(L(3))) we see that di = {0, (a3, a?,a3,a3)o1} £ do+da - a
contradiction. O
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