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CONGRUENCE PRESERVING FUNCTIONS ON MEDIAN
ALGEBRAS

MIROSLAV PLOŠČICA

Abstract. Affine completeness and local affine completeness for median
algebras has been characterized by H. J. Bandelt [1] and M. Ploščica [10].
In this paper we take a more general approach and try to describe the clone
of all congruence preserving functions on median algebras which are not
necessarily (locally) affine complete. We define several types of congruence
preserving functions and conjecture that every congruence preserving func-
tion is a composition of functions of these types. We are able to confirm
this conjecture in the unary case.

An analogous problem has been recently solved for distributive lattices
(see [11]), so we try to apply similar methods.

1. Introduction

A finitary function f : An → A on an algebra A is called congruence
preserving (or compatible) if, for any congruence θ of A, (ai, bi) ∈ θ, i =
1, . . . , n, implies that

(f(a1, . . . , an), f(b1, . . . , bn)) ∈ θ.

A polynomial function (or simply a polynomial) of A is any function that can
be obtained by composition of the basic operations of A, the projections and
the constant functions. A local polynomial of A is any function which can be
interpolated by polynomials on all finite subsets of its domain.

Obviously, (local) polynomials are compatible functions. An algebra is
called (locally) affine complete if the converse holds: every compatible function
is a (local) polynomial.

The (local) affine completeness has been investigated for various classes of
algebras, including median algebras. (See [1] and [10].) An overview of results
until the 1990s can be found in the monograph by K. Kaarli and A.F. Pixley [7].
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We believe that the concept of compatibility is worth investigating also in
algebras that are not affine complete, because it is so closely connected with
the fundamental algebraic notions of a congruence and a polynomial.

The project of describing the compatible functions of an algebra in a given
(favourite) variety has been explicitly formulated in [8] and [11]. Since com-
patible functions form a clone, our wish is to express every compatible function
as a composition of functions from some nice and well understood family. (We
recall that a clone on a set A is a set of finitary functions containing all
projections and closed under composition.)

Problem 1.1. Given an algebra A, find nice generating sets for the clone
C(A) of all compatible functions of A and the clone LP (A) of all local poly-
nomial functions of A.

A description of this kind is obvious for the clone of all polynomial functions,
where the generating set consists of the basic operations and constants. Thus
the answer is known if the algebra A is affine complete. If A is not affine
complete, we seek for an extension of this generating set by some typical
compatible non-polynomial functions.

The above problem has been successfully solved for distributive lattices in
[11]. In the present paper we obtain a partial solution for median algebras.
Since these algebras are very close to distributive lattices, one could expect a
similar description of compatible functions.

Now we recall the definition and some terminology for median algebras.
For more information see also Bandelt and Hedĺıková [3], van de Vel [12] and
Isbell [6]. Note that the median algebras we are dealing with in this note are
called symmetric media in [6].

On any distributive lattice D we define the median polynomial by

m(x, y, z) = (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z).

This operation turns D into a median algebra. In general, a median algebra is
an algebra endowed with a single ternary operation which can be embedded
in (D,m) for some distributive lattice D. Median algebras form a variety
(equational class). This variety can be defined, for example, by the following
identities (see [6]):

m(a, a, b) = a, m(a, c, d) = m(a,m(a, c, d),m(b, c, d)),
m(a, b, c) = m(a, c, b) = m(b, a, c) = m(b, c, a) = m(c, a, b) = m(c, b, a).

(See [3] for other systems of axioms.)
Let M be a median algebra. For elements a, b, c ∈ M we say that c is

between a and b if c = m(a, b, c). A subset C of M is convex if a, b ∈ C and
x ∈ M imply m(a, b, x) ∈ C. Equivalently, C is convex if, for every a, b ∈ C,
C contains all elements of M that are between a and b. It is easy to see that
the intersection of any number of convex sets is convex. Hence, for any subset
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A of M there is a smallest convex set containing A. We denote it by Conv A.
A set of the form Conv{a, b} is called a segment and will be denoted by [a, b].
(Of course, the segments [a, b] and [b, a] coincide.) It is not difficult to show
that the segment Conv{a, b} consists of all elements that are between a and b.
Any segment (or, more generally, any convex set) is a subalgebra of M . On
every segment [a, b] we can define lattice operations by

x ∧ y = m(a, x, y), x ∨ y = m(b, x, y).

This turns [a, b] into a bounded distributive lattice (with a the smallest and b
the greatest element). Moreover, m on [a, b] coincides with the lattice median
operation. So, [a, b] as a median algebra and [a, b] as a lattice are polynomially
equivalent, which means that they have the same polynomials, congruences
and also compatible functions.

A segment is called Boolean if it is isomorphic to (B,m) for some Boolean
lattice B.

A nonempty convex set is prime if its complement is also convex and
nonempty. Any prime convex set C determines a congruence θ of M with
the equivalence classes C and M \C. Congruences of this form are called split
congruences. The quotient M/θ is isomorphic to 2, the 2-element lattice with
its median operation. Using the embedding of M into a distributive lattice D
one can show that for every x, y ∈ M , x 6= y, there is a prime convex set P
with x ∈ P , y /∈ P . (Indeed, the intersection of M with any prime ideal of D
is a prime convex set.) As a consequence, every median algebra is a subdirect
power of 2. Another consequence is that every congruence on a median alge-
bra is the intersection of split congruences. Hence, to prove the compatibility
of a function on a median algebra, it suffices to check the condition for all split
congruences.

2. Unary compatible functions

Two types of non-polynomial compatible functions have been introduced
in [1] and [10]. Let (M,m) be a median algebra.

Lemma 2.1 (see [1], page 26). For any Boolean segment Z = [a, b], the
function cZ : M → M defined by letting cZ(x) to be the complement of
m(x, a, b) in Z is compatible.

The functions of the above type will be called Boolean segment complemen-
tations. If a 6= b, then such a function is not a local polynomial. The lattice
analogue of this type of compatible functions has been discussed in [5].

A subset C of M is called a Čebyšev set, if for every x ∈ M there exists
xC ∈ C such that m(x, xC , y) = xC for every y ∈ C (i.e. xC is between x and
every element of C).

Every Čebyšev set is convex, but not vice versa. If C = Conv A for a finite
set A ⊆ M , then C is Čebyšev and the function x 7→ xC is a polynomial. (See
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[10], Lemmas 2.3 and 2.5.) Such a function will be called a projection on a
Čebyšev set.

Lemma 2.2. For any Čebyšev set C, the function M → M defined by x 7→ xC

is a local polynomial, and hence compatible.

Proof. For every finite set X ⊆ M consider the convex hull B = Conv{xC |
x ∈ X}. Clearly, B ⊆ C, so xB = xC for every x ∈ X. Thus, the projection
on B is a polynomial, which interpolates the projection on C.

If a Čebyšev set C is not a convex hull of a finite set, then the projection
on C is not a polynomial ([10], Lemma 4.4). As an example, consider the
real plane R×R with the median operation derived from the pointwise lattice
operations. The set C = {(x, y) ∈ R2 | x ≤ 0} is a Čebyšev set, which is not
a convex hull of a finite set. The projection on C is a local polynomial, which
is not a polynomial.

Projections on Čebyšev sets also have their analogue in distributive lattices,
namely projections on almost principal ideals and filters (see [9]).

In this section we prove that that every unary compatible function on a
median algebra is a composition of polynomials, Boolean segment comple-
mentations and projections on Čebyšev sets. In the sequel, let f : M → M
be a compatible function.

Lemma 2.3. f is an endomorphism of M and f3 = f .

Proof. Let x, y, z ∈ M and assume that f(m(x, y, z)) 6= m(f(x), f(y), f(z)).
Then there is a prime convex set C such that m(f(x), f(y), f(z)) ∈ C and
f(m(x, y, z)) /∈ C. Let θC be the split congruence corresponding to C. The
convexity of M \ C implies that at least two of f(x), f(y), f(z) must belong
to C. Without loss of generality, f(x) ∈ C, f(y) ∈ C. The compatibility of
f implies that (x,m(x, y, z)) /∈ θC , (y, m(x, y, z)) /∈ θC . Since θC has only
two equivalence classes, we obtain that (x, y) ∈ θC . If x, y ∈ C, then also
m(x, y, z) ∈ C. If x, y ∈ M \ C, then also m(x, y, z) ∈ M \ C. In both cases
(x,m(x, y, z)) ∈ θC , a contradiction.

To prove the second statement, assume that f3(x) 6= f(x) for some x ∈ M .
Then f(x) ∈ C and f3(x) /∈ C for some prime convex set C. If x ∈ C, then
(x, f(x)) ∈ θC and the compatibility of f implies that (f(x), f2(x)) ∈ θC and
(f2(x), f3(x)) ∈ θC , so (f(x), f3(x)) ∈ θC , a contradiction. If f2(x) ∈ C, then
(f(x), f2(x)) ∈ θC and (f2(x), f3(x)) /∈ θC , a contradiction. The remaining
case is x /∈ C, f2(x) /∈ C. Then (x, f2(x)) ∈ θC , but (f(x), f3(x)) /∈ θC ,
another contradiction with the compatibility of f .

Lemma 2.4. For every a ∈ M the segment Z = [f(a), f2(a)] is Boolean. The
complement of x ∈ Z is y = m(f(x), f(a), f2(a)).

Proof. Clearly, y ∈ Z. We claim that f(a) = m(f(a), x, y) and f2(a) =
m(f2(a), x, y). Suppose for contradiction that f(a) 6= m(f(a), x, y). Then
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there is a prime convex set C with f(a) ∈ C, m(f(a), x, y) /∈ C. This is
only possible if x, y /∈ C. From f(a) ∈ C and y = m(f(x), f(a), f2(a)) /∈ C
we deduce that f2(a) /∈ C and f(x) /∈ C. So (f(a), f2(a)) /∈ θC and the
compatibility of f implies that (a, f(a)) /∈ θC , hence a /∈ C. Now we have,
(x, a) ∈ θC and (f(x), f(a)) /∈ θC , which contradicts the compatibility of f .
The proof of f2(a) = m(f2(a), x, y) is the same, with the roles of f(a) and
f2(a) interchanged (using the fact that f3(a) = f(a)).

Let us fix a ∈ M and define
I = {f(x) | x ∈ M, m(f(x), f(a), f2(a)) = f(a)},
J = {f(x) | x ∈ M, m(f(x), f(a), f2(a)) = f2(a)}.

Lemma 2.5. I and J are Čebyšev sets. For every x ∈ M ,

xI = m(f(x), f2(x), f(a)), xJ = m(f(x), f2(x), f2(a)).

Proof. Let x ∈ M . Denote y = m(f(x), f2(x), f(a)) = f(m(x, f(x), a)). We
claim that y ∈ I. For contradiction, let m(y, f(a), f2(a)) 6= f(a). Then
f(a) ∈ C and m(y, f(a), f2(a)) /∈ C for some prime convex set C. Since
C is convex, we have y, f2(a) /∈ C. For the same reason, y /∈ C implies
f(x), f2(x) /∈ C. Since f(a) ∈ C and f2(a) /∈ C, the compatibility of f yields
that a /∈ C. Now we have (a, f(x)) ∈ θC , while (f(a), f2(x)) /∈ θC , which
contradicts the compatibility of f .

Thus, y ∈ I. Now we need to show that m(x, f(t), y) = y for every f(t) ∈ I.
Suppose that this equality is not true and choose a prime convex set C with
y ∈ C, m(x, f(t), y) /∈ C. Then x, f(t) /∈ C. We consider the following two
cases.

I. If f(x) /∈ C, then (x, f(x)) ∈ θC and the compatibility of f yields that
(f(x), f2(x)) ∈ θC , hence f2(x) /∈ C. But then y = m(f(x), f2(x), f(a)) /∈ C,
a contradiction.

II. Suppose that f(x) ∈ C. Then (f(t), f(x)) /∈ θC implies (x, t) /∈ θC . Since
also (x, f(x)) /∈ θC and θC has only two equivalence classes, we have (f(x), t) ∈
θC and (f2(x), f(t)) ∈ θC , hence f2(x) /∈ C. From m(f(x), f2(x), f(a)) = y ∈
C we deduce that f(a) ∈ C. So, (f(a), f(x)) ∈ θC , hence (f2(a), f2(x)) ∈ θC ,
and therefore f2(a) /∈ C. But then f(t) ∈ I implies that m(f(t), f(a), f2(a)) =
f(a) /∈ C, a contradiction.

The proof for J is the same, with f(a) playing the role of a. (Notice that
f3(a) = f(a).)

We can illustrate the above Lemma by the following example. Let L be the
direct product Z × 2 of the chain of integers and the 2-element chain {0, 1}
(the “infinite ladder”). Consider the median operation on L derived from the
pointwise lattice operations. Let f : L → L be given by f(x, i) = (x, 1 − i).
Let a be any element of the form (x, 0). Then I = {(x, i) ∈ L | i = 1} and
J = {(x, i) ∈ L | i = 0} are the Čebyšev sets defined in Lemma 2.5. (The



184 M. PLOŠČICA

choice of a = (x, 1) would interchange I and J .) Also, notice that the Boolean
segments discussed in Lemma 2.4 have the form [(x, 0), (x, 1)].

Theorem 2.6. For every x ∈ M ,

f(x) = m(cZ(x), xI , xJ),

where Z denotes the Boolean segment [f(a), f2(a)].

Proof. Let x ∈ M and assume that f(x) 6= m(cZ(x), xI , xJ). Let C be a prime
convex set such that f(x) ∈ C and m(cZ(x), xI , xJ) /∈ C. We distinguish the
following two cases.

I. Let x ∈ C. Then (x, f(x)) ∈ θC and the compatibility of f implies that
(f(x), f2(x)) ∈ θC , so f2(x) ∈ C. By 2.5, xI , xJ ∈ C, which is a contradiction
with m(cZ(x), xI , xJ) /∈ C.

II. Let x /∈ C. If f2(x) ∈ C, then we get the same contradiction as above.
So, let f2(x) /∈ C. We consider the following two cases for a.

If a ∈ C, then (a, f(x)) ∈ θC , so (f(a), f2(x)) ∈ θC , (f2(a), f(x)) ∈ θC .
Hence, f(a) /∈ C, f2(a) ∈ C. Consequently, xI /∈ C, xJ ∈ C. Further,
y = m(x, f(a), f2(a)) /∈ C, so (x, y) ∈ θC , (f(x), f(y)) ∈ θC and therefore
f(y) ∈ C. By 2.4, cZ(x) = m(f(y), f(a), f2(a)) ∈ C. Then m(cZ(x), xI , xJ) ∈
C, a contradiction.

If a /∈ C, then (a, x) ∈ θC and we obtain that (f(a), f(x)) ∈ θC and also
(f2(a), f2(x)) ∈ θC , so f(a) ∈ C, f2(a) /∈ C. The argument leading to a
contradiction is the same as above.

As a consequence, we obtain our main result.

Theorem 2.7. Every unary compatible function on a median algebra is a
composition of polynomials, Boolean segment complementations and projec-
tions on Čebyšev sets.

3. Some binary compatible functions

In order to describe two new types of congruence preserving functions, it is
convenient to consider a median algebra M embedded in a distributive lattice
D with a smallest element 0, such that

(i) M is a lower subset of D (x ≤ y ∈ M implies x ∈ M);
(ii) M is a ∧-subsemilattice of D;
(iii) every element of D is a join of finitely many elements from M .

Such an embedding is always possible (see [2]), and moreover, the element
0 ∈ M can be chosen arbitrarily.

The embedding of M into D allows us to use the lattice operations in D in
order to describe the compatible functions in M .

A Čebyšev ideal in M is a Čebyšev set, which is also an ideal in the lattice
D. (Notice that this concept depends on the choice of D.)
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Lemma 3.1. For every Čebyšev ideal P , the function f : M2 → M defined
by f(x, y) = m(x, y, xP ∨ yP ) is a local polynomial.

Proof. Let X ⊆ M be finite. Since P is an ideal, there exists t ∈ P such that
xP ≤ t for every x ∈ X. The function p(x, y) = m(x, y, t) is a polynomial and
for x, y ∈ X we have xP ∨ yP = p(xP , yP ). By Lemma 2.2, the assignment
x 7→ xP is a local polynomial. It follows that f is a composition of polynomials
and local polynomials, hence f itself is a local polynomial.

The above lemma describes a new type of compatible functions. Since
the restriction of this function to P is the lattice-theoretical join, we refer to
functions of this type as local joins.

As an example, consider the chain R of real numbers with the natural
median operation. Let 0 be the usual real zero. (Any other element would
serve our purpose equally well.) The lattice D in this case is the product of
the real intervals [0,∞) and [0,−∞), with the inverse ordering on [0,−∞),
so that 0 is the smallest element there. The natural embedding R → D
maps x ∈ R into (x, 0) if x is positive, and into (0, x) if x is negative. The
set P = {(x, 0) | x ≥ 0} is a Čebyšev ideal and it is easy to check that
m(x, y, xP ∨ yP ) = x ∨ y for every x, y ∈ R. (Here ∨ is the usual join in the
natural ordering of R, which on P coincides with the join in D.)

Now we introduce our last type of compatible functions.
A generalized Boolean segment is a pair (P,Q) of Čebyšev sets such that

the segment [xP , xQ] is Boolean for every x ∈ M .

Lemma 3.2. Let Z = [a, b] be a Boolean segment in M . Let x ∈ Z and let
x′ denote the complement of x in Z. Let C be a prime convex set such that
a ∈ C, b /∈ C. Then x ∈ C if and only if x′ /∈ C.

Proof. Let x ∈ C. Since m(x, x′, b) = b /∈ C, we have x′ /∈ C. Similarly, if
x /∈ C, then m(x, x′, a) = a ∈ C implies that x′ ∈ C.

Lemma 3.3. For every generalized Boolean segment (P,Q), the function f :
M2 → M defined by

f(x, y) = c[xP ,xQ](y),
where cZ is the function defined in Lemma 2.1, is compatible.

Proof. Let θ be a split congruence on M with the congruence classes C and
M \C. Let (a, b), (c, d) ∈ θ. Since the projections on P and Q are compatible,
we have (aP , bP ), (aQ, bQ) ∈ θ. Then also (m(c, aP , aQ),m(d, bP , bQ)) ∈ θ.
Now, if aP , aQ ∈ C, then also bP , bQ ∈ C and consequently f(a, c), f(b, d) ∈ C,
so (f(a, c), f(b, d)) ∈ θ. If aP , aQ /∈ C, the same argument applies (using
M \ C instead of C). Finally, let aP ∈ C, aQ /∈ C. (The case aP /∈ C,
aQ ∈ C is similar.) Then 3.2 implies that f(a, c) ∈ C iff m(c, aP , aQ) /∈ C
and f(b, d) ∈ C iff m(d, bP , bQ) /∈ C. Since (m(c, aP , aQ),m(d, bP , bQ)) ∈ θ,
we obtain that f(a, c) ∈ C iff f(b, d) ∈ C, so (f(a, c), f(b, d)) ∈ θ.
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The compatible functions described in the above lemma will be called gener-
alized Boolean segment complementations. Notice, that this type of functions
is a common generalization of projections on Čebyšev sets and Boolean seg-
ment complementations. Indeed, if P = Q then f(x, y) = xP , and if P = {a},
Q = {b}, then f(x, y) = c[a,b](y).

As an example, let M be the lattice of all finite subsets of an infinite set
S, ordered by set inclusion, and regarded as a median algebra. It is easy to
see that every segment of M is Boolean. Consider the Čebyšev sets P = {∅},
Q = M . Then (P,Q) is a generalized Boolean segment and the induced
function is f(X, Y ) = X \ Y (the set-theoretical difference). Indeed, XP = ∅,
XQ = X, m(XP , XQ, Y ) = X ∩ Y , so f(X, Y ) is the complement of X ∩ Y in
the segment (interval) [∅, X].

Let us remark that the lattice-theoretical analogue of generalized Boolean
complementations has been studied in [11]. The results on compatible func-
tions on distributive lattices suggest the following conjectures.

Conjecture 3.4. Every compatible function on a median algebra is a compo-
sition of polynomials, local joins, and generalized Boolean complementations.

Conjecture 3.5. Every local polynomial on a median algebra is a composition
of polynomials, projections on Čebyšev sets and local joins.
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[8] Kuchmei, V., Ploščica, M.: Congruence-preserving functions on Stone and Kleene alge-

bras, Algebra Universalis 54 (2004), 419–434.
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